Existence theorems for nonlinear differential equations having trichotomy in Banach spaces

Adel Mahmoud Gomaa

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 2, page 339-365
  • ISSN: 0011-4642

Abstract

top
We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation x ˙ ( t ) = ( t ) x ( t ) + f ( t , x ( t ) ) , t ( P ) where { ( t ) : t } is a family of linear operators from a Banach space E into itself and f : × E E . By L ( E ) we denote the space of linear operators from E into itself. Furthermore, for a < b and d > 0 , we let C ( [ - d , 0 ] , E ) be the Banach space of continuous functions from [ - d , 0 ] into E and f d : [ a , b ] × C ( [ - d , 0 ] , E ) E . Let ^ : [ a , b ] L ( E ) be a strongly measurable and Bochner integrable operator on [ a , b ] and for t [ a , b ] define τ t x ( s ) = x ( t + s ) for each s [ - d , 0 ] . We prove that, under certain conditions, the differential equation with delay x ˙ ( t ) = ^ ( t ) x ( t ) + f d ( t , τ t x ) if t [ a , b ] , ( Q ) has at least one weak solution and, under suitable assumptions, the differential equation (Q) has a solution. Next, under a generalization of the compactness assumptions, we show that the problem (Q) has a solution too.

How to cite

top

Gomaa, Adel Mahmoud. "Existence theorems for nonlinear differential equations having trichotomy in Banach spaces." Czechoslovak Mathematical Journal 67.2 (2017): 339-365. <http://eudml.org/doc/288200>.

@article{Gomaa2017,
abstract = {We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation \[ \dot\{x\}(t)=\mathcal \{L\}( t)x(t)+f(t,x(t)),\quad t\in \mathbb \{R\}\qquad \{\rm (P)\} \] where $\lbrace \mathcal \{L\}(t)\colon t\in \mathbb \{R\}\rbrace $ is a family of linear operators from a Banach space $E$ into itself and $f\colon \mathbb \{R\}\times E\rightarrow E$. By $L(E)$ we denote the space of linear operators from $E$ into itself. Furthermore, for $a<b$ and $d>0$, we let $C([-d,0],E)$ be the Banach space of continuous functions from $[-d,0]$ into $E$ and $f^\{d\}\colon [a,b]\times C([-d,0],E)\rightarrow E$. Let $\widehat\{\mathcal \{L\}\}\colon [a,b]\rightarrow L(E)$ be a strongly measurable and Bochner integrable operator on $[a,b]$ and for $t\in [a,b]$ define $\tau _\{t\}x(s)=x(t+s)$ for each $s \in [-d,0]$. We prove that, under certain conditions, the differential equation with delay \[ \dot\{x\}(t)=\widehat\{\mathcal \{L\}\}(t)x(t)+f^\{d\}(t,\tau \_\{t\}x)\quad \text\{if \}t\in [a,b],\qquad \{\rm (Q)\} \] has at least one weak solution and, under suitable assumptions, the differential equation (Q) has a solution. Next, under a generalization of the compactness assumptions, we show that the problem (Q) has a solution too.},
author = {Gomaa, Adel Mahmoud},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonlinear differential equation; trichotomy; existence theorem},
language = {eng},
number = {2},
pages = {339-365},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence theorems for nonlinear differential equations having trichotomy in Banach spaces},
url = {http://eudml.org/doc/288200},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Gomaa, Adel Mahmoud
TI - Existence theorems for nonlinear differential equations having trichotomy in Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 339
EP - 365
AB - We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation \[ \dot{x}(t)=\mathcal {L}( t)x(t)+f(t,x(t)),\quad t\in \mathbb {R}\qquad {\rm (P)} \] where $\lbrace \mathcal {L}(t)\colon t\in \mathbb {R}\rbrace $ is a family of linear operators from a Banach space $E$ into itself and $f\colon \mathbb {R}\times E\rightarrow E$. By $L(E)$ we denote the space of linear operators from $E$ into itself. Furthermore, for $a<b$ and $d>0$, we let $C([-d,0],E)$ be the Banach space of continuous functions from $[-d,0]$ into $E$ and $f^{d}\colon [a,b]\times C([-d,0],E)\rightarrow E$. Let $\widehat{\mathcal {L}}\colon [a,b]\rightarrow L(E)$ be a strongly measurable and Bochner integrable operator on $[a,b]$ and for $t\in [a,b]$ define $\tau _{t}x(s)=x(t+s)$ for each $s \in [-d,0]$. We prove that, under certain conditions, the differential equation with delay \[ \dot{x}(t)=\widehat{\mathcal {L}}(t)x(t)+f^{d}(t,\tau _{t}x)\quad \text{if }t\in [a,b],\qquad {\rm (Q)} \] has at least one weak solution and, under suitable assumptions, the differential equation (Q) has a solution. Next, under a generalization of the compactness assumptions, we show that the problem (Q) has a solution too.
LA - eng
KW - nonlinear differential equation; trichotomy; existence theorem
UR - http://eudml.org/doc/288200
ER -

References

top
  1. Banaś, J., Goebel, K., Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure Mathematics 60 Marcel Dekker, New York (1980). (1980) Zbl0441.47056MR0591679
  2. Boudourides, M. A., 10.1017/S0004972700006766, Bull. Aust. Math. Soc. 22 (1980), 457-463. (1980) Zbl0442.34057MR0601651DOI10.1017/S0004972700006766
  3. Caraballo, T., Morillas, F., Valero, J., 10.3934/dcds.2014.34.51, Discrete Contin. Dyn. Syst. 34 (2014), 51-77. (2014) Zbl1323.34087MR3072985DOI10.3934/dcds.2014.34.51
  4. Cichoń, M., On bounded weak solutions of a nonlinear differential equation in Banach space, Funct. Approximatio Comment. Math. 21 (1992), 27-35. (1992) Zbl0777.34041MR1296988
  5. Cichoń, M., A point of view on measures of noncompactness, Demonstr. Math. 26 (1993), 767-777. (1993) Zbl0809.47049MR1265840
  6. Cichoń, M., On measures of weak noncompactness, Publ. Math. 45 (1994), 93-102. (1994) Zbl0829.47042MR1291804
  7. Cichoń, M., Trichotomy and bounded solutions of nonlinear differential equations, Math. Bohem. 119 (1994), 275-284. (1994) Zbl0819.34040MR1305530
  8. Cichoń, M., 10.1017/S0004972700016774, Bull. Aust. Math. Soc. 53 (1996), 109-122. (1996) Zbl0849.34016MR1371918DOI10.1017/S0004972700016774
  9. Cramer, E., Lakshmikantham, V., Mitchell, A. R., 10.1016/0362-546X(78)90063-9, Nonlinear Anal., Theory, Methods Appl. 2 (1978), 169-177. (1978) Zbl0379.34041MR0512280DOI10.1016/0362-546X(78)90063-9
  10. Dawidowski, M., Rzepecki, B., On bounded solutions of nonlinear differential equations in Banach spaces, Demonstr. Math. 18 (1985), 91-102. (1985) Zbl0593.34062MR0816022
  11. Elaydi, S., Hajek, O., 10.1016/0022-247X(88)90255-7, J. Math. Anal. Appl. 129 (1988), 362-374. (1988) Zbl0651.34052MR0924294DOI10.1016/0022-247X(88)90255-7
  12. Elaydi, S., Hájek, O., Exponential dichotomy and trichotomy of nonlinear diffrerential equations, Differ. Integral Equ. 3 (1990), 1201-1224. (1990) Zbl0722.34053MR1073067
  13. Gohberg, I. T., Goldenstein, L. S., Markus, A. S., Investigation of some properties of bounded linear operators in connection with their q -norms, Uchen. Zap. Kishinevskogo Univ. 29 (1957), 29-36 Russian. (1957) 
  14. Gomaa, A. M., 10.1016/S0960-0779(02)00643-4, Chaos Solitons Fractals 18 (2003), 687-692. (2003) Zbl1058.34077MR1984052DOI10.1016/S0960-0779(02)00643-4
  15. Gomaa, A. M., Existence solutions for differential equations with delay in Banach spaces, Proc. Math. Phys. Soc. Egypt 84 (2006), 1-12. (2006) MR2349563
  16. Gomaa, A. M., On theorems for weak solutions of nonlinear differential equations with and without delay in Banach spaces, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 179-191. (2007) Zbl1182.34080MR2377955
  17. Gomaa, A. M., Existence and topological properties of solution sets for differential inclusions with delay, Commentat. Math. 48 (2008), 45-58. (2008) Zbl1179.34072MR2440748
  18. Gomaa, A. M., 10.1142/S0219887810004336, Int. J. Geom. Mathods Mod. Phys. 7 (2010), 357-366. (2010) Zbl1214.34068MR2646768DOI10.1142/S0219887810004336
  19. Gomaa, A. M., 10.7146/math.scand.a-15242, Math. Scand. 112 (2013), 225-239. (2013) Zbl1276.34063MR3073456DOI10.7146/math.scand.a-15242
  20. Hille, E., Phillips, R. S., Functional Analysis and Semigroups, Colloquium Publications 31, American Mathematical Society, Providence (1957). (1957) Zbl0078.10004MR0423094
  21. Ibrahim, A.-G., Gomaa, A. M., Strong and weak solutions for differential inclusions with moving constraints in Banach spaces, PU.M.A., Pure Math. Appl. 8 (1997), 53-65. (1997) Zbl0910.34027MR1490000
  22. Krzyśka, S., Kubiaczyk, I., On bounded pseudo and weak solutions of a nonlinear differential equation in Banach spaces, Demonstr. Math. 32 (1999), 323-330. (1999) Zbl0954.34050MR1710255
  23. Kuratowski, K., Sur les espaces complets, Fundamenta 15 (1930), 301-309 French 9999JFM99999 56.1124.04. (1930) MR0028007
  24. Lupa, N., Megan, M., 10.1155/2013/409049, J. Funct. Spaces Appl. 2013 (2013), Article ID 409049, 8 pages. (2013) Zbl06281050MR3111843DOI10.1155/2013/409049
  25. Makowiak, M., 10.1515/dema-1997-0411, Demonstr. Math. 30 (1997), 801-808. (1997) Zbl0909.34049MR1617273DOI10.1515/dema-1997-0411
  26. Massera, J. L., Schäffer, J. J., Linear Differential Equations and Function Spaces, Pure and Applied Mathematics 21, Academic Press, New York (1966). (1966) Zbl0243.34107MR0212324
  27. Megan, M., Stoica, C., 10.1007/s00020-008-1555-z, Integral Equations Oper. Theory 60 (2008), 499-506. (2008) Zbl1151.34051MR2390441DOI10.1007/s00020-008-1555-z
  28. Mitchell, A. R., Smith, C., 10.1016/b978-0-12-434160-9.50028-x, Nonlinear Equations in Abstract Spaces Proc. Int. Symp., Arlington, 1977, Academic Press, New York (1978), 387-403. (1978) Zbl0452.34054MR0502554DOI10.1016/b978-0-12-434160-9.50028-x
  29. Olech, O., On the existence and uniqueness of solutions of an ordinary differential equation in the case of Banach space, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 667-673. (1960) Zbl0173.35303MR0147733
  30. Papageorgiou, N. S., 10.1017/S0004972700003993, Bull. Aust. Math. Soc. 33 (1986), 407-418. (1986) Zbl0578.34039MR837487DOI10.1017/S0004972700003993
  31. Popa, I.-L., Megan, M., Ceauşu, T., 10.17114/j.aua.2014.39.28, Acta Univ. Apulensis, Math. Inform. 39 (2014), 329-339. (2014) Zbl06521157MR3304423DOI10.17114/j.aua.2014.39.28
  32. Przeradzki, B., 10.4064/ap-56-2-103-121, Ann. Pol. Math. 56 (1992), 103-121. (1992) Zbl0805.47041MR1159982DOI10.4064/ap-56-2-103-121
  33. Sadovski, B. N., On a fixed-point principle, Funct. Anal. Appl. 1 (1967), 151-153 translation from Funkts. Anal. Prilozh. 1 1967 74-76. (1967) Zbl0165.49102MR0211302
  34. Sasu, A. L., Sasu, B., 10.1016/j.amc.2014.07.108, Appl. Math. Comput. 245 (2014), 447-461. (2014) Zbl1335.39027MR3260730DOI10.1016/j.amc.2014.07.108
  35. Sasu, B., Sasu, A. L., 10.1007/s00209-005-0920-8, Math. Z. 253 (2006), 515-536. (2006) Zbl1108.34047MR2221084DOI10.1007/s00209-005-0920-8
  36. Szep, A., Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Stud. Sci. Math. Hung. 6 (1971), 197-203. (1971) Zbl0238.34100MR0330688
  37. Szufla, S., On the existence of solutions of differential equations in Banach spaces, Bull. Acad. Pol. Sci., Sér. Sci. Math. 30 (1982), 507-515. (1982) Zbl0532.34045MR0718727

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.