Existence theorems for nonlinear differential equations having trichotomy in Banach spaces
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 2, page 339-365
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topGomaa, Adel Mahmoud. "Existence theorems for nonlinear differential equations having trichotomy in Banach spaces." Czechoslovak Mathematical Journal 67.2 (2017): 339-365. <http://eudml.org/doc/288200>.
@article{Gomaa2017,
abstract = {We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation \[ \dot\{x\}(t)=\mathcal \{L\}( t)x(t)+f(t,x(t)),\quad t\in \mathbb \{R\}\qquad \{\rm (P)\} \]
where $\lbrace \mathcal \{L\}(t)\colon t\in \mathbb \{R\}\rbrace $ is a family of linear operators from a Banach space $E$ into itself and $f\colon \mathbb \{R\}\times E\rightarrow E$. By $L(E)$ we denote the space of linear operators from $E$ into itself. Furthermore, for $a<b$ and $d>0$, we let $C([-d,0],E)$ be the Banach space of continuous functions from $[-d,0]$ into $E$ and $f^\{d\}\colon [a,b]\times C([-d,0],E)\rightarrow E$. Let $\widehat\{\mathcal \{L\}\}\colon [a,b]\rightarrow L(E)$ be a strongly measurable and Bochner integrable operator on $[a,b]$ and for $t\in [a,b]$ define $\tau _\{t\}x(s)=x(t+s)$ for each $s \in [-d,0]$. We prove that, under certain conditions, the differential equation with delay \[ \dot\{x\}(t)=\widehat\{\mathcal \{L\}\}(t)x(t)+f^\{d\}(t,\tau \_\{t\}x)\quad \text\{if \}t\in [a,b],\qquad \{\rm (Q)\} \]
has at least one weak solution and, under suitable assumptions, the differential equation (Q) has a solution. Next, under a generalization of the compactness assumptions, we show that the problem (Q) has a solution too.},
author = {Gomaa, Adel Mahmoud},
journal = {Czechoslovak Mathematical Journal},
keywords = {nonlinear differential equation; trichotomy; existence theorem},
language = {eng},
number = {2},
pages = {339-365},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence theorems for nonlinear differential equations having trichotomy in Banach spaces},
url = {http://eudml.org/doc/288200},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Gomaa, Adel Mahmoud
TI - Existence theorems for nonlinear differential equations having trichotomy in Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 339
EP - 365
AB - We give existence theorems for weak and strong solutions with trichotomy of the nonlinear differential equation \[ \dot{x}(t)=\mathcal {L}( t)x(t)+f(t,x(t)),\quad t\in \mathbb {R}\qquad {\rm (P)} \]
where $\lbrace \mathcal {L}(t)\colon t\in \mathbb {R}\rbrace $ is a family of linear operators from a Banach space $E$ into itself and $f\colon \mathbb {R}\times E\rightarrow E$. By $L(E)$ we denote the space of linear operators from $E$ into itself. Furthermore, for $a<b$ and $d>0$, we let $C([-d,0],E)$ be the Banach space of continuous functions from $[-d,0]$ into $E$ and $f^{d}\colon [a,b]\times C([-d,0],E)\rightarrow E$. Let $\widehat{\mathcal {L}}\colon [a,b]\rightarrow L(E)$ be a strongly measurable and Bochner integrable operator on $[a,b]$ and for $t\in [a,b]$ define $\tau _{t}x(s)=x(t+s)$ for each $s \in [-d,0]$. We prove that, under certain conditions, the differential equation with delay \[ \dot{x}(t)=\widehat{\mathcal {L}}(t)x(t)+f^{d}(t,\tau _{t}x)\quad \text{if }t\in [a,b],\qquad {\rm (Q)} \]
has at least one weak solution and, under suitable assumptions, the differential equation (Q) has a solution. Next, under a generalization of the compactness assumptions, we show that the problem (Q) has a solution too.
LA - eng
KW - nonlinear differential equation; trichotomy; existence theorem
UR - http://eudml.org/doc/288200
ER -
References
top- Banaś, J., Goebel, K., Measure of Noncompactness in Banach Spaces, Lecture Notes in Pure Mathematics 60 Marcel Dekker, New York (1980). (1980) Zbl0441.47056MR0591679
- Boudourides, M. A., 10.1017/S0004972700006766, Bull. Aust. Math. Soc. 22 (1980), 457-463. (1980) Zbl0442.34057MR0601651DOI10.1017/S0004972700006766
- Caraballo, T., Morillas, F., Valero, J., 10.3934/dcds.2014.34.51, Discrete Contin. Dyn. Syst. 34 (2014), 51-77. (2014) Zbl1323.34087MR3072985DOI10.3934/dcds.2014.34.51
- Cichoń, M., On bounded weak solutions of a nonlinear differential equation in Banach space, Funct. Approximatio Comment. Math. 21 (1992), 27-35. (1992) Zbl0777.34041MR1296988
- Cichoń, M., A point of view on measures of noncompactness, Demonstr. Math. 26 (1993), 767-777. (1993) Zbl0809.47049MR1265840
- Cichoń, M., On measures of weak noncompactness, Publ. Math. 45 (1994), 93-102. (1994) Zbl0829.47042MR1291804
- Cichoń, M., Trichotomy and bounded solutions of nonlinear differential equations, Math. Bohem. 119 (1994), 275-284. (1994) Zbl0819.34040MR1305530
- Cichoń, M., 10.1017/S0004972700016774, Bull. Aust. Math. Soc. 53 (1996), 109-122. (1996) Zbl0849.34016MR1371918DOI10.1017/S0004972700016774
- Cramer, E., Lakshmikantham, V., Mitchell, A. R., 10.1016/0362-546X(78)90063-9, Nonlinear Anal., Theory, Methods Appl. 2 (1978), 169-177. (1978) Zbl0379.34041MR0512280DOI10.1016/0362-546X(78)90063-9
- Dawidowski, M., Rzepecki, B., On bounded solutions of nonlinear differential equations in Banach spaces, Demonstr. Math. 18 (1985), 91-102. (1985) Zbl0593.34062MR0816022
- Elaydi, S., Hajek, O., 10.1016/0022-247X(88)90255-7, J. Math. Anal. Appl. 129 (1988), 362-374. (1988) Zbl0651.34052MR0924294DOI10.1016/0022-247X(88)90255-7
- Elaydi, S., Hájek, O., Exponential dichotomy and trichotomy of nonlinear diffrerential equations, Differ. Integral Equ. 3 (1990), 1201-1224. (1990) Zbl0722.34053MR1073067
- Gohberg, I. T., Goldenstein, L. S., Markus, A. S., Investigation of some properties of bounded linear operators in connection with their -norms, Uchen. Zap. Kishinevskogo Univ. 29 (1957), 29-36 Russian. (1957)
- Gomaa, A. M., 10.1016/S0960-0779(02)00643-4, Chaos Solitons Fractals 18 (2003), 687-692. (2003) Zbl1058.34077MR1984052DOI10.1016/S0960-0779(02)00643-4
- Gomaa, A. M., Existence solutions for differential equations with delay in Banach spaces, Proc. Math. Phys. Soc. Egypt 84 (2006), 1-12. (2006) MR2349563
- Gomaa, A. M., On theorems for weak solutions of nonlinear differential equations with and without delay in Banach spaces, Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 47 (2007), 179-191. (2007) Zbl1182.34080MR2377955
- Gomaa, A. M., Existence and topological properties of solution sets for differential inclusions with delay, Commentat. Math. 48 (2008), 45-58. (2008) Zbl1179.34072MR2440748
- Gomaa, A. M., 10.1142/S0219887810004336, Int. J. Geom. Mathods Mod. Phys. 7 (2010), 357-366. (2010) Zbl1214.34068MR2646768DOI10.1142/S0219887810004336
- Gomaa, A. M., 10.7146/math.scand.a-15242, Math. Scand. 112 (2013), 225-239. (2013) Zbl1276.34063MR3073456DOI10.7146/math.scand.a-15242
- Hille, E., Phillips, R. S., Functional Analysis and Semigroups, Colloquium Publications 31, American Mathematical Society, Providence (1957). (1957) Zbl0078.10004MR0423094
- Ibrahim, A.-G., Gomaa, A. M., Strong and weak solutions for differential inclusions with moving constraints in Banach spaces, PU.M.A., Pure Math. Appl. 8 (1997), 53-65. (1997) Zbl0910.34027MR1490000
- Krzyśka, S., Kubiaczyk, I., On bounded pseudo and weak solutions of a nonlinear differential equation in Banach spaces, Demonstr. Math. 32 (1999), 323-330. (1999) Zbl0954.34050MR1710255
- Kuratowski, K., Sur les espaces complets, Fundamenta 15 (1930), 301-309 French 9999JFM99999 56.1124.04. (1930) MR0028007
- Lupa, N., Megan, M., 10.1155/2013/409049, J. Funct. Spaces Appl. 2013 (2013), Article ID 409049, 8 pages. (2013) Zbl06281050MR3111843DOI10.1155/2013/409049
- Makowiak, M., 10.1515/dema-1997-0411, Demonstr. Math. 30 (1997), 801-808. (1997) Zbl0909.34049MR1617273DOI10.1515/dema-1997-0411
- Massera, J. L., Schäffer, J. J., Linear Differential Equations and Function Spaces, Pure and Applied Mathematics 21, Academic Press, New York (1966). (1966) Zbl0243.34107MR0212324
- Megan, M., Stoica, C., 10.1007/s00020-008-1555-z, Integral Equations Oper. Theory 60 (2008), 499-506. (2008) Zbl1151.34051MR2390441DOI10.1007/s00020-008-1555-z
- Mitchell, A. R., Smith, C., 10.1016/b978-0-12-434160-9.50028-x, Nonlinear Equations in Abstract Spaces Proc. Int. Symp., Arlington, 1977, Academic Press, New York (1978), 387-403. (1978) Zbl0452.34054MR0502554DOI10.1016/b978-0-12-434160-9.50028-x
- Olech, O., On the existence and uniqueness of solutions of an ordinary differential equation in the case of Banach space, Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 8 (1960), 667-673. (1960) Zbl0173.35303MR0147733
- Papageorgiou, N. S., 10.1017/S0004972700003993, Bull. Aust. Math. Soc. 33 (1986), 407-418. (1986) Zbl0578.34039MR837487DOI10.1017/S0004972700003993
- Popa, I.-L., Megan, M., Ceauşu, T., 10.17114/j.aua.2014.39.28, Acta Univ. Apulensis, Math. Inform. 39 (2014), 329-339. (2014) Zbl06521157MR3304423DOI10.17114/j.aua.2014.39.28
- Przeradzki, B., 10.4064/ap-56-2-103-121, Ann. Pol. Math. 56 (1992), 103-121. (1992) Zbl0805.47041MR1159982DOI10.4064/ap-56-2-103-121
- Sadovski, B. N., On a fixed-point principle, Funct. Anal. Appl. 1 (1967), 151-153 translation from Funkts. Anal. Prilozh. 1 1967 74-76. (1967) Zbl0165.49102MR0211302
- Sasu, A. L., Sasu, B., 10.1016/j.amc.2014.07.108, Appl. Math. Comput. 245 (2014), 447-461. (2014) Zbl1335.39027MR3260730DOI10.1016/j.amc.2014.07.108
- Sasu, B., Sasu, A. L., 10.1007/s00209-005-0920-8, Math. Z. 253 (2006), 515-536. (2006) Zbl1108.34047MR2221084DOI10.1007/s00209-005-0920-8
- Szep, A., Existence theorem for weak solutions of ordinary differential equations in reflexive Banach spaces, Stud. Sci. Math. Hung. 6 (1971), 197-203. (1971) Zbl0238.34100MR0330688
- Szufla, S., On the existence of solutions of differential equations in Banach spaces, Bull. Acad. Pol. Sci., Sér. Sci. Math. 30 (1982), 507-515. (1982) Zbl0532.34045MR0718727
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.