Copies of l p n ’s uniformly in the spaces Π 2 ( C [ 0 , 1 ] , X ) and Π 1 ( C [ 0 , 1 ] , X )

Dumitru Popa

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 2, page 457-467
  • ISSN: 0011-4642

Abstract

top
We study the presence of copies of l p n ’s uniformly in the spaces Π 2 ( C [ 0 , 1 ] , X ) and Π 1 ( C [ 0 , 1 ] , X ) . By using Dvoretzky’s theorem we deduce that if X is an infinite-dimensional Banach space, then Π 2 ( C [ 0 , 1 ] , X ) contains λ 2 -uniformly copies of l n ’s and Π 1 ( C [ 0 , 1 ] , X ) contains λ -uniformly copies of l 2 n ’s for all λ > 1 . As an application, we show that if X is an infinite-dimensional Banach space then the spaces Π 2 ( C [ 0 , 1 ] , X ) and Π 1 ( C [ 0 , 1 ] , X ) are distinct, extending the well-known result that the spaces Π 2 ( C [ 0 , 1 ] , X ) and 𝒩 ( C [ 0 , 1 ] , X ) are distinct.

How to cite

top

Popa, Dumitru. "Copies of $l_{p}^{n}$’s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $." Czechoslovak Mathematical Journal 67.2 (2017): 457-467. <http://eudml.org/doc/288204>.

@article{Popa2017,
abstract = {We study the presence of copies of $l_\{p\}^\{n\}$’s uniformly in the spaces $\Pi _\{2\}( C[ 0,1] ,X) $ and $\Pi _\{1\}( C[0,1] ,X)$. By using Dvoretzky’s theorem we deduce that if $X$ is an infinite-dimensional Banach space, then $\Pi _\{2\}( C[ 0,1] ,X) $ contains $\lambda \sqrt\{2\}$-uniformly copies of $l_\{\infty \}^\{n\}$’s and $\Pi _\{1\}( C[ 0,1] ,X) $ contains $\lambda $-uniformly copies of $l_\{2\}^\{n\}$’s for all $\lambda >1$. As an application, we show that if $X$ is an infinite-dimensional Banach space then the spaces $\Pi _\{2\}( C[ 0,1] ,X) $ and $\Pi _\{1\}( C[ 0,1] ,X) $ are distinct, extending the well-known result that the spaces $\Pi _\{2\}( C[ 0,1],X) $ and $\mathcal \{N\}( C[ 0,1] ,X) $ are distinct.},
author = {Popa, Dumitru},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p$-summing linear operators; copies of $l_\{p\}^\{n\}$’s uniformly; local structure of a Banach space; multiplication operator; average},
language = {eng},
number = {2},
pages = {457-467},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Copies of $l_\{p\}^\{n\}$’s uniformly in the spaces $\Pi _\{2\}( C[ 0,1] ,X) $ and $\Pi _\{1\}(C[ 0,1],X) $},
url = {http://eudml.org/doc/288204},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Popa, Dumitru
TI - Copies of $l_{p}^{n}$’s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 457
EP - 467
AB - We study the presence of copies of $l_{p}^{n}$’s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}( C[0,1] ,X)$. By using Dvoretzky’s theorem we deduce that if $X$ is an infinite-dimensional Banach space, then $\Pi _{2}( C[ 0,1] ,X) $ contains $\lambda \sqrt{2}$-uniformly copies of $l_{\infty }^{n}$’s and $\Pi _{1}( C[ 0,1] ,X) $ contains $\lambda $-uniformly copies of $l_{2}^{n}$’s for all $\lambda >1$. As an application, we show that if $X$ is an infinite-dimensional Banach space then the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}( C[ 0,1] ,X) $ are distinct, extending the well-known result that the spaces $\Pi _{2}( C[ 0,1],X) $ and $\mathcal {N}( C[ 0,1] ,X) $ are distinct.
LA - eng
KW - $p$-summing linear operators; copies of $l_{p}^{n}$’s uniformly; local structure of a Banach space; multiplication operator; average
UR - http://eudml.org/doc/288204
ER -

References

top
  1. Costara, C., Popa, D., 10.1007/978-94-017-0223-2, Kluwer Texts in the Mathematical Sciences 26, Kluwer Academic Publishers Group, Dordrecht (2003). (2003) Zbl1070.46001MR2027363DOI10.1007/978-94-017-0223-2
  2. Defant, A., Floret, K., 10.1016/s0304-0208(08)x7019-7, North-Holland Mathematics Studies 176, North-Holland Publishing, Amsterdam (1993). (1993) Zbl0774.46018MR1209438DOI10.1016/s0304-0208(08)x7019-7
  3. Diestel, J., Jarchow, H., Tonge, A., 10.1017/CBO9780511526138, Cambridge Studies in Advanced Mathematics 43, Cambridge University Press, Cambridge (1995). (1995) Zbl0855.47016MR1342297DOI10.1017/CBO9780511526138
  4. J. Diestel, J. J. Uhl, Jr., 10.1090/surv/015, Mathematical Surveys 15, American Mathematical Society, Providence (1977). (1977) Zbl0369.46039MR0453964DOI10.1090/surv/015
  5. Lima, Å., Lima, V., Oja, E., 10.1016/j.jfa.2010.07.017, J. Funct. Anal. 259 (2010), 2886-2901. (2010) Zbl1207.46019MR2719278DOI10.1016/j.jfa.2010.07.017
  6. Pietsch, A., Operator Ideals, Mathematische Monographien 16, VEB Deutscher der Wissenschaften, Berlin (1978). (1978) Zbl0399.47039MR0519680
  7. Popa, D., 10.1007/s00013-006-1916-2, Arch. Math. 88 (2007), 349-357. (2007) Zbl1124.47013MR2311842DOI10.1007/s00013-006-1916-2
  8. Popa, D., 10.1007/s12044-007-0002-4, Proc. Indian Acad. Sci., Math. Sci. 117 (2007), 13-30. (2007) Zbl1124.47023MR2300675DOI10.1007/s12044-007-0002-4
  9. Popa, D., 10.4134/JKMS.2010.47.5.899, J. Korean Math. Soc. 47 (2010), 899-924. (2010) Zbl1214.47023MR2722999DOI10.4134/JKMS.2010.47.5.899
  10. Sofi, M. A., 10.1016/S0019-3577(09)80014-1, Indag. Math., New Ser. 20 (2009), 273-284. (2009) Zbl1193.46005MR2599817DOI10.1016/S0019-3577(09)80014-1

NotesEmbed ?

top

You must be logged in to post comments.