Copies of l p n ’s uniformly in the spaces Π 2 ( C [ 0 , 1 ] , X ) and Π 1 ( C [ 0 , 1 ] , X )

Dumitru Popa

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 2, page 457-467
  • ISSN: 0011-4642

Abstract

top
We study the presence of copies of l p n ’s uniformly in the spaces Π 2 ( C [ 0 , 1 ] , X ) and Π 1 ( C [ 0 , 1 ] , X ) . By using Dvoretzky’s theorem we deduce that if X is an infinite-dimensional Banach space, then Π 2 ( C [ 0 , 1 ] , X ) contains λ 2 -uniformly copies of l n ’s and Π 1 ( C [ 0 , 1 ] , X ) contains λ -uniformly copies of l 2 n ’s for all λ > 1 . As an application, we show that if X is an infinite-dimensional Banach space then the spaces Π 2 ( C [ 0 , 1 ] , X ) and Π 1 ( C [ 0 , 1 ] , X ) are distinct, extending the well-known result that the spaces Π 2 ( C [ 0 , 1 ] , X ) and 𝒩 ( C [ 0 , 1 ] , X ) are distinct.

How to cite

top

Popa, Dumitru. "Copies of $l_{p}^{n}$’s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $." Czechoslovak Mathematical Journal 67.2 (2017): 457-467. <http://eudml.org/doc/288204>.

@article{Popa2017,
abstract = {We study the presence of copies of $l_\{p\}^\{n\}$’s uniformly in the spaces $\Pi _\{2\}( C[ 0,1] ,X) $ and $\Pi _\{1\}( C[0,1] ,X)$. By using Dvoretzky’s theorem we deduce that if $X$ is an infinite-dimensional Banach space, then $\Pi _\{2\}( C[ 0,1] ,X) $ contains $\lambda \sqrt\{2\}$-uniformly copies of $l_\{\infty \}^\{n\}$’s and $\Pi _\{1\}( C[ 0,1] ,X) $ contains $\lambda $-uniformly copies of $l_\{2\}^\{n\}$’s for all $\lambda >1$. As an application, we show that if $X$ is an infinite-dimensional Banach space then the spaces $\Pi _\{2\}( C[ 0,1] ,X) $ and $\Pi _\{1\}( C[ 0,1] ,X) $ are distinct, extending the well-known result that the spaces $\Pi _\{2\}( C[ 0,1],X) $ and $\mathcal \{N\}( C[ 0,1] ,X) $ are distinct.},
author = {Popa, Dumitru},
journal = {Czechoslovak Mathematical Journal},
keywords = {$p$-summing linear operators; copies of $l_\{p\}^\{n\}$’s uniformly; local structure of a Banach space; multiplication operator; average},
language = {eng},
number = {2},
pages = {457-467},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Copies of $l_\{p\}^\{n\}$’s uniformly in the spaces $\Pi _\{2\}( C[ 0,1] ,X) $ and $\Pi _\{1\}(C[ 0,1],X) $},
url = {http://eudml.org/doc/288204},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Popa, Dumitru
TI - Copies of $l_{p}^{n}$’s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}(C[ 0,1],X) $
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 457
EP - 467
AB - We study the presence of copies of $l_{p}^{n}$’s uniformly in the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}( C[0,1] ,X)$. By using Dvoretzky’s theorem we deduce that if $X$ is an infinite-dimensional Banach space, then $\Pi _{2}( C[ 0,1] ,X) $ contains $\lambda \sqrt{2}$-uniformly copies of $l_{\infty }^{n}$’s and $\Pi _{1}( C[ 0,1] ,X) $ contains $\lambda $-uniformly copies of $l_{2}^{n}$’s for all $\lambda >1$. As an application, we show that if $X$ is an infinite-dimensional Banach space then the spaces $\Pi _{2}( C[ 0,1] ,X) $ and $\Pi _{1}( C[ 0,1] ,X) $ are distinct, extending the well-known result that the spaces $\Pi _{2}( C[ 0,1],X) $ and $\mathcal {N}( C[ 0,1] ,X) $ are distinct.
LA - eng
KW - $p$-summing linear operators; copies of $l_{p}^{n}$’s uniformly; local structure of a Banach space; multiplication operator; average
UR - http://eudml.org/doc/288204
ER -

References

top
  1. Costara, C., Popa, D., 10.1007/978-94-017-0223-2, Kluwer Texts in the Mathematical Sciences 26, Kluwer Academic Publishers Group, Dordrecht (2003). (2003) Zbl1070.46001MR2027363DOI10.1007/978-94-017-0223-2
  2. Defant, A., Floret, K., 10.1016/s0304-0208(08)x7019-7, North-Holland Mathematics Studies 176, North-Holland Publishing, Amsterdam (1993). (1993) Zbl0774.46018MR1209438DOI10.1016/s0304-0208(08)x7019-7
  3. Diestel, J., Jarchow, H., Tonge, A., 10.1017/CBO9780511526138, Cambridge Studies in Advanced Mathematics 43, Cambridge University Press, Cambridge (1995). (1995) Zbl0855.47016MR1342297DOI10.1017/CBO9780511526138
  4. J. Diestel, J. J. Uhl, Jr., 10.1090/surv/015, Mathematical Surveys 15, American Mathematical Society, Providence (1977). (1977) Zbl0369.46039MR0453964DOI10.1090/surv/015
  5. Lima, Å., Lima, V., Oja, E., 10.1016/j.jfa.2010.07.017, J. Funct. Anal. 259 (2010), 2886-2901. (2010) Zbl1207.46019MR2719278DOI10.1016/j.jfa.2010.07.017
  6. Pietsch, A., Operator Ideals, Mathematische Monographien 16, VEB Deutscher der Wissenschaften, Berlin (1978). (1978) Zbl0399.47039MR0519680
  7. Popa, D., 10.1007/s00013-006-1916-2, Arch. Math. 88 (2007), 349-357. (2007) Zbl1124.47013MR2311842DOI10.1007/s00013-006-1916-2
  8. Popa, D., 10.1007/s12044-007-0002-4, Proc. Indian Acad. Sci., Math. Sci. 117 (2007), 13-30. (2007) Zbl1124.47023MR2300675DOI10.1007/s12044-007-0002-4
  9. Popa, D., 10.4134/JKMS.2010.47.5.899, J. Korean Math. Soc. 47 (2010), 899-924. (2010) Zbl1214.47023MR2722999DOI10.4134/JKMS.2010.47.5.899
  10. Sofi, M. A., 10.1016/S0019-3577(09)80014-1, Indag. Math., New Ser. 20 (2009), 273-284. (2009) Zbl1193.46005MR2599817DOI10.1016/S0019-3577(09)80014-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.