On Jacobi fields and a canonical connection in sub-Riemannian geometry
Archivum Mathematicum (2017)
- Volume: 053, Issue: 2, page 77-92
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topBarilari, Davide, and Rizzi, Luca. "On Jacobi fields and a canonical connection in sub-Riemannian geometry." Archivum Mathematicum 053.2 (2017): 77-92. <http://eudml.org/doc/288210>.
@article{Barilari2017,
abstract = {In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.},
author = {Barilari, Davide, Rizzi, Luca},
journal = {Archivum Mathematicum},
keywords = {sub-Riemannian geometry; curvature; connection; Jacobi fields},
language = {eng},
number = {2},
pages = {77-92},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On Jacobi fields and a canonical connection in sub-Riemannian geometry},
url = {http://eudml.org/doc/288210},
volume = {053},
year = {2017},
}
TY - JOUR
AU - Barilari, Davide
AU - Rizzi, Luca
TI - On Jacobi fields and a canonical connection in sub-Riemannian geometry
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 2
SP - 77
EP - 92
AB - In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.
LA - eng
KW - sub-Riemannian geometry; curvature; connection; Jacobi fields
UR - http://eudml.org/doc/288210
ER -
References
top- Agrachev, A.A., Some open problems, Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., 5, Springer, Cham, 2014, pp. 1–13. (2014) Zbl1292.49040MR3205092
- Agrachev, A.A., Barilari, D., Boscain, U., Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes), 2015, http://webusers.imj-prg.fr/~davide.barilari/notes.php.
- Agrachev, A.A., Barilari, D., Rizzi, L., Curvature: a variational approach, Memoirs of the AMS (in press).
- Agrachev, A.A., Barilari, D., Rizzi, L., 10.1007/s12220-016-9684-0, J. Geom. Anal. (2016), 1–43, DOI10.1007/s12220-016-9684-0. (2016) MR3606555DOI10.1007/s12220-016-9684-0
- Agrachev, A.A., Zelenko, I., 10.1023/A:1013904801414, J. Dynam. Control Systems 8 (1) (2002), 93–140. DOI: http://dx.doi.org/10.1023/A:1013904801414 (2002) Zbl1019.53038MR1874705DOI10.1023/A:1013904801414
- Agrachev, A.A., Zelenko, I., 10.1023/A:1015317426164, J. Dynam. Control Systems 8 (2) (2002), 167–215, DOI10.1023/A:1015317426164. (2002) Zbl1045.53051MR1896170DOI10.1023/A:1015317426164
- Barilari, D., Rizzi, L., 10.1051/cocv/2015013, ESAIM Control Optim. Calc. Var. 22 (2) (2016), 439–472. (2016) Zbl1344.53023MR3491778DOI10.1051/cocv/2015013
- Jean, F., Control of nonholonomic systems: from sub-Riemannian geometry to motion planning, SpringerBriefs in Mathematics, Springer, Cham, 2014. (2014) Zbl1309.93002MR3308372
- Kobayashi, S., Nomizu, K., Foundations of differential geometry. Vol. I, Wiley Classics Library. John Wiley & Sons, Inc., New York, 1996, Reprint of the 1963 original, A Wiley-Interscience Publication. (1996) MR1393940
- Li, C., Zelenko, I., 10.1016/j.geomphys.2010.12.009, J. Geom. Phys. 61 (4) (2011), 781–807. (2011) Zbl1216.53039MR2765404DOI10.1016/j.geomphys.2010.12.009
- Montgomery, R., 10.1137/S0363012993244945, SIAM J. Control Optim. 32 (6) (1994), 1605–1620. (1994) Zbl0816.49019MR1297101DOI10.1137/S0363012993244945
- Montgomery, R., A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs ed., vol. 91, AMS, Providence, RI, 2002. (2002) Zbl1044.53022MR1867362
- Rifford, L., 10.1007/978-3-319-04804-8, SpringerBriefs in Mathematics, Springer, Cham, 2014. (2014) MR3308395DOI10.1007/978-3-319-04804-8
- Rizzi, L., Silveira, P., Sub-Riemannian Ricci curvatures and universal diameter bounds for 3-Sasakian manifolds, ArXiv e-prints, Sept. 2015, J. Inst. Math. Jussieu (in press).
- Zelenko, I., Li, C., 10.1016/j.difgeo.2009.07.002, Differential Geom. Appl. 27 (6) (2009), 723–742. (2009) Zbl1177.53020MR2552681DOI10.1016/j.difgeo.2009.07.002
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.