On Jacobi fields and a canonical connection in sub-Riemannian geometry

Davide Barilari; Luca Rizzi

Archivum Mathematicum (2017)

  • Volume: 053, Issue: 2, page 77-92
  • ISSN: 0044-8753

Abstract

top
In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.

How to cite

top

Barilari, Davide, and Rizzi, Luca. "On Jacobi fields and a canonical connection in sub-Riemannian geometry." Archivum Mathematicum 053.2 (2017): 77-92. <http://eudml.org/doc/288210>.

@article{Barilari2017,
abstract = {In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.},
author = {Barilari, Davide, Rizzi, Luca},
journal = {Archivum Mathematicum},
keywords = {sub-Riemannian geometry; curvature; connection; Jacobi fields},
language = {eng},
number = {2},
pages = {77-92},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On Jacobi fields and a canonical connection in sub-Riemannian geometry},
url = {http://eudml.org/doc/288210},
volume = {053},
year = {2017},
}

TY - JOUR
AU - Barilari, Davide
AU - Rizzi, Luca
TI - On Jacobi fields and a canonical connection in sub-Riemannian geometry
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 2
SP - 77
EP - 92
AB - In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.
LA - eng
KW - sub-Riemannian geometry; curvature; connection; Jacobi fields
UR - http://eudml.org/doc/288210
ER -

References

top
  1. Agrachev, A.A., Some open problems, Geometric control theory and sub-Riemannian geometry, Springer INdAM Ser., 5, Springer, Cham, 2014, pp. 1–13. (2014) Zbl1292.49040MR3205092
  2. Agrachev, A.A., Barilari, D., Boscain, U., Introduction to Riemannian and sub-Riemannian geometry (Lecture Notes), 2015, http://webusers.imj-prg.fr/~davide.barilari/notes.php. 
  3. Agrachev, A.A., Barilari, D., Rizzi, L., Curvature: a variational approach, Memoirs of the AMS (in press). 
  4. Agrachev, A.A., Barilari, D., Rizzi, L., 10.1007/s12220-016-9684-0, J. Geom. Anal. (2016), 1–43, DOI10.1007/s12220-016-9684-0. (2016) MR3606555DOI10.1007/s12220-016-9684-0
  5. Agrachev, A.A., Zelenko, I., 10.1023/A:1013904801414, J. Dynam. Control Systems 8 (1) (2002), 93–140. DOI: http://dx.doi.org/10.1023/A:1013904801414 (2002) Zbl1019.53038MR1874705DOI10.1023/A:1013904801414
  6. Agrachev, A.A., Zelenko, I., 10.1023/A:1015317426164, J. Dynam. Control Systems 8 (2) (2002), 167–215, DOI10.1023/A:1015317426164. (2002) Zbl1045.53051MR1896170DOI10.1023/A:1015317426164
  7. Barilari, D., Rizzi, L., 10.1051/cocv/2015013, ESAIM Control Optim. Calc. Var. 22 (2) (2016), 439–472. (2016) Zbl1344.53023MR3491778DOI10.1051/cocv/2015013
  8. Jean, F., Control of nonholonomic systems: from sub-Riemannian geometry to motion planning, SpringerBriefs in Mathematics, Springer, Cham, 2014. (2014) Zbl1309.93002MR3308372
  9. Kobayashi, S., Nomizu, K., Foundations of differential geometry. Vol. I, Wiley Classics Library. John Wiley & Sons, Inc., New York, 1996, Reprint of the 1963 original, A Wiley-Interscience Publication. (1996) MR1393940
  10. Li, C., Zelenko, I., 10.1016/j.geomphys.2010.12.009, J. Geom. Phys. 61 (4) (2011), 781–807. (2011) Zbl1216.53039MR2765404DOI10.1016/j.geomphys.2010.12.009
  11. Montgomery, R., 10.1137/S0363012993244945, SIAM J. Control Optim. 32 (6) (1994), 1605–1620. (1994) Zbl0816.49019MR1297101DOI10.1137/S0363012993244945
  12. Montgomery, R., A tour of subriemannian geometries, their geodesics and applications, Mathematical Surveys and Monographs ed., vol. 91, AMS, Providence, RI, 2002. (2002) Zbl1044.53022MR1867362
  13. Rifford, L., 10.1007/978-3-319-04804-8, SpringerBriefs in Mathematics, Springer, Cham, 2014. (2014) MR3308395DOI10.1007/978-3-319-04804-8
  14. Rizzi, L., Silveira, P., Sub-Riemannian Ricci curvatures and universal diameter bounds for 3-Sasakian manifolds, ArXiv e-prints, Sept. 2015, J. Inst. Math. Jussieu (in press). 
  15. Zelenko, I., Li, C., 10.1016/j.difgeo.2009.07.002, Differential Geom. Appl. 27 (6) (2009), 723–742. (2009) Zbl1177.53020MR2552681DOI10.1016/j.difgeo.2009.07.002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.