On critical values of twisted Artin -functions
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 2, page 551-555
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topWong, Peng-Jie. "On critical values of twisted Artin $L$-functions." Czechoslovak Mathematical Journal 67.2 (2017): 551-555. <http://eudml.org/doc/288218>.
@article{Wong2017,
	abstract = {We give a simple proof that critical values of any Artin $L$-function attached to a representation $\rho $ with character $\chi _\{\rho \}$ are stable under twisting by a totally even character $\chi $, up to the $\dim \rho $-th power of the Gauss sum related to $\chi $ and an element in the field generated by the values of $\chi _\{\rho \}$ and $\chi $ over $\mathbb \{Q\}$. This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.},
	author = {Wong, Peng-Jie},
	journal = {Czechoslovak Mathematical Journal},
	keywords = {Artin $L$-function; character; Galois Gauss sum; special value},
	language = {eng},
	number = {2},
	pages = {551-555},
	publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
	title = {On critical values of twisted Artin $L$-functions},
	url = {http://eudml.org/doc/288218},
	volume = {67},
	year = {2017},
}
TY  - JOUR
AU  - Wong, Peng-Jie
TI  - On critical values of twisted Artin $L$-functions
JO  - Czechoslovak Mathematical Journal
PY  - 2017
PB  - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL  - 67
IS  - 2
SP  - 551
EP  - 555
AB  - We give a simple proof that critical values of any Artin $L$-function attached to a representation $\rho $ with character $\chi _{\rho }$ are stable under twisting by a totally even character $\chi $, up to the $\dim \rho $-th power of the Gauss sum related to $\chi $ and an element in the field generated by the values of $\chi _{\rho }$ and $\chi $ over $\mathbb {Q}$. This extends a result of Coates and Lichtenbaum as well as the previous work of Ward.
LA  - eng
KW  - Artin $L$-function; character; Galois Gauss sum; special value
UR  - http://eudml.org/doc/288218
ER  - 
References
top- Coates, J., Lichtenbaum, S., 10.2307/1970916, Ann. Math. (2) 98 (1973), 498-550. (1973) Zbl0279.12005MR0330107DOI10.2307/1970916
- Klingen, H., 10.1007/BF01451369, Math. Ann. 145 (1962), 265-272 German. (1962) Zbl0101.03002MR0133304DOI10.1007/BF01451369
- Martinet, J., Character theory and Artin -functions, Algebraic Number Fields Proc. Symp. London math. Soc., Univ. Durham 1975, Academic Press, London (1977), 1-87. (1977) Zbl0359.12015MR0447187
- Neukirch, J., 10.1007/978-3-662-03983-0, Grundlehren der Mathematischen Wissenschaften 322, Springer, Berlin (1999). (1999) Zbl0956.11021MR1697859DOI10.1007/978-3-662-03983-0
- Siegel, C. L., Über die Fourierschen Koeffizienten von Modulformen, Nachr. Akad. Wiss. Göttingen, II. Math.-Phys. Kl. 3 (1970), 15-56 German. (1970) Zbl0225.10031MR0285488
- Ward, K., 10.1007/s00013-014-0692-7, Arch. Math. 103 (2014), 285-290. (2014) Zbl1314.11035MR3266371DOI10.1007/s00013-014-0692-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 