Density estimation via best -approximation on classes of step functions
Kybernetika (2017)
- Volume: 53, Issue: 2, page 198-219
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFerger, Dietmar, and Venz, John. "Density estimation via best $L^2$-approximation on classes of step functions." Kybernetika 53.2 (2017): 198-219. <http://eudml.org/doc/288220>.
@article{Ferger2017,
abstract = {We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best $L^2$-approximation of a probability density function $f$. If $f$ itself is a step-function the number of jumps may be unknown.},
author = {Ferger, Dietmar, Venz, John},
journal = {Kybernetika},
keywords = {argmin-theorem; density estimation; step functions; martingale inequalities; multivariate cadlag stochastic processes},
language = {eng},
number = {2},
pages = {198-219},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Density estimation via best $L^2$-approximation on classes of step functions},
url = {http://eudml.org/doc/288220},
volume = {53},
year = {2017},
}
TY - JOUR
AU - Ferger, Dietmar
AU - Venz, John
TI - Density estimation via best $L^2$-approximation on classes of step functions
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 2
SP - 198
EP - 219
AB - We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best $L^2$-approximation of a probability density function $f$. If $f$ itself is a step-function the number of jumps may be unknown.
LA - eng
KW - argmin-theorem; density estimation; step functions; martingale inequalities; multivariate cadlag stochastic processes
UR - http://eudml.org/doc/288220
ER -
References
top- Billingsley, P., 10.1002/9780470316962, John Wiley and Sons, Inc., New York 1999. MR1700749DOI10.1002/9780470316962
- Birnbaum, Z., Marshall, A., 10.1214/aoms/1177704964, Ann. Math. Statist. 32 (1961), 687-703. MR0148106DOI10.1214/aoms/1177704964
- Chu, C. K., Cheng, P. E., Estimation of jump points and jump values of a density function., Statist. Sinica 6 (1996), 79-95. Zbl0839.62039MR1379050
- Dudley, R. .M., 10.1017/cbo9780511665622, Cambridge University Press, New York 1999. Zbl1317.60030MR1720712DOI10.1017/cbo9780511665622
- Ferger, D., 10.3103/s1066530710030038, Math. Methods Statist. 19 (2010), 246-266. Zbl1282.60029MR2742928DOI10.3103/s1066530710030038
- Ferger, D., Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies., Theory Stoch. Process. 20 (2015), 36, 13-41. MR3510226
- Gaenssler, P., Stute, W., Wahrscheinlichkeitstheorie., Springer-Verlag, Berlin, Heidelberg, New York 1977. Zbl0357.60001MR0501219
- Kanazawa, Y., 10.1080/03610928808829688, Comm. Statist. Theory Methods 17 (1988), 1401-1422. Zbl0939.62508MR0945798DOI10.1080/03610928808829688
- Kanazawa, Y., 10.1214/aos/1176348523, Ann. Statist. 20 (1992), 291-304. Zbl0745.62034MR1150345DOI10.1214/aos/1176348523
- Koul, H. L., 10.1007/978-1-4613-0055-7, Springer-Verlag, New York 2002. MR1911855DOI10.1007/978-1-4613-0055-7
- Massart, P., 10.1214/aop/1176990746, Ann. Probab. 18 (1990), 1269-1283. Zbl0713.62021MR1062069DOI10.1214/aop/1176990746
- Rockefellar, R. T., Wets, R. J.-B., Variational Analysis., Springer-Verlag, Berlin, Heidelberg 1998.
- Shorack, G. R., Wellner, J. A., Empirical Processes With Applications to Statistics., John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore 1986. Zbl1171.62057MR0838963
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.