Density estimation via best L 2 -approximation on classes of step functions

Dietmar Ferger; John Venz

Kybernetika (2017)

  • Volume: 53, Issue: 2, page 198-219
  • ISSN: 0023-5954

Abstract

top
We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best L 2 -approximation of a probability density function f . If f itself is a step-function the number of jumps may be unknown.

How to cite

top

Ferger, Dietmar, and Venz, John. "Density estimation via best $L^2$-approximation on classes of step functions." Kybernetika 53.2 (2017): 198-219. <http://eudml.org/doc/288220>.

@article{Ferger2017,
abstract = {We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best $L^2$-approximation of a probability density function $f$. If $f$ itself is a step-function the number of jumps may be unknown.},
author = {Ferger, Dietmar, Venz, John},
journal = {Kybernetika},
keywords = {argmin-theorem; density estimation; step functions; martingale inequalities; multivariate cadlag stochastic processes},
language = {eng},
number = {2},
pages = {198-219},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Density estimation via best $L^2$-approximation on classes of step functions},
url = {http://eudml.org/doc/288220},
volume = {53},
year = {2017},
}

TY - JOUR
AU - Ferger, Dietmar
AU - Venz, John
TI - Density estimation via best $L^2$-approximation on classes of step functions
JO - Kybernetika
PY - 2017
PB - Institute of Information Theory and Automation AS CR
VL - 53
IS - 2
SP - 198
EP - 219
AB - We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best $L^2$-approximation of a probability density function $f$. If $f$ itself is a step-function the number of jumps may be unknown.
LA - eng
KW - argmin-theorem; density estimation; step functions; martingale inequalities; multivariate cadlag stochastic processes
UR - http://eudml.org/doc/288220
ER -

References

top
  1. Billingsley, P., 10.1002/9780470316962, John Wiley and Sons, Inc., New York 1999. MR1700749DOI10.1002/9780470316962
  2. Birnbaum, Z., Marshall, A., 10.1214/aoms/1177704964, Ann. Math. Statist. 32 (1961), 687-703. MR0148106DOI10.1214/aoms/1177704964
  3. Chu, C. K., Cheng, P. E., Estimation of jump points and jump values of a density function., Statist. Sinica 6 (1996), 79-95. Zbl0839.62039MR1379050
  4. Dudley, R. .M., 10.1017/cbo9780511665622, Cambridge University Press, New York 1999. Zbl1317.60030MR1720712DOI10.1017/cbo9780511665622
  5. Ferger, D., 10.3103/s1066530710030038, Math. Methods Statist. 19 (2010), 246-266. Zbl1282.60029MR2742928DOI10.3103/s1066530710030038
  6. Ferger, D., Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies., Theory Stoch. Process. 20 (2015), 36, 13-41. MR3510226
  7. Gaenssler, P., Stute, W., Wahrscheinlichkeitstheorie., Springer-Verlag, Berlin, Heidelberg, New York 1977. Zbl0357.60001MR0501219
  8. Kanazawa, Y., 10.1080/03610928808829688, Comm. Statist. Theory Methods 17 (1988), 1401-1422. Zbl0939.62508MR0945798DOI10.1080/03610928808829688
  9. Kanazawa, Y., 10.1214/aos/1176348523, Ann. Statist. 20 (1992), 291-304. Zbl0745.62034MR1150345DOI10.1214/aos/1176348523
  10. Koul, H. L., 10.1007/978-1-4613-0055-7, Springer-Verlag, New York 2002. MR1911855DOI10.1007/978-1-4613-0055-7
  11. Massart, P., 10.1214/aop/1176990746, Ann. Probab. 18 (1990), 1269-1283. Zbl0713.62021MR1062069DOI10.1214/aop/1176990746
  12. Rockefellar, R. T., Wets, R. J.-B., Variational Analysis., Springer-Verlag, Berlin, Heidelberg 1998. 
  13. Shorack, G. R., Wellner, J. A., Empirical Processes With Applications to Statistics., John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore 1986. Zbl1171.62057MR0838963

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.