Characterizations of z -Lindelöf spaces

Ahmad Al-Omari; Takashi Noiri

Archivum Mathematicum (2017)

  • Volume: 053, Issue: 2, page 93-99
  • ISSN: 0044-8753

Abstract

top
A topological space ( X , τ ) is said to be z -Lindelöf  [1] if every cover of X by cozero sets of ( X , τ ) admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of z -Lindelöf spaces.

How to cite

top

Al-Omari, Ahmad, and Noiri, Takashi. "Characterizations of $z$-Lindelöf spaces." Archivum Mathematicum 053.2 (2017): 93-99. <http://eudml.org/doc/288222>.

@article{Al2017,
abstract = {A topological space $(X, \tau )$ is said to be $z$-Lindelöf  [1] if every cover of $X$ by cozero sets of $(X,\tau )$ admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of $z$-Lindelöf spaces.},
author = {Al-Omari, Ahmad, Noiri, Takashi},
journal = {Archivum Mathematicum},
keywords = {cozero set; $\omega $-open set; Lindelöf; $z$-Lindelöf},
language = {eng},
number = {2},
pages = {93-99},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Characterizations of $z$-Lindelöf spaces},
url = {http://eudml.org/doc/288222},
volume = {053},
year = {2017},
}

TY - JOUR
AU - Al-Omari, Ahmad
AU - Noiri, Takashi
TI - Characterizations of $z$-Lindelöf spaces
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 2
SP - 93
EP - 99
AB - A topological space $(X, \tau )$ is said to be $z$-Lindelöf  [1] if every cover of $X$ by cozero sets of $(X,\tau )$ admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of $z$-Lindelöf spaces.
LA - eng
KW - cozero set; $\omega $-open set; Lindelöf; $z$-Lindelöf
UR - http://eudml.org/doc/288222
ER -

References

top
  1. Al-Ani, A.T., z -compact spaces, Journal of University of Anbar for Pure Science 3 (1) (2009), 118–121. (2009) 
  2. Al-Omari, A., On ideal topological spaces via cozero sets, Questions Answers Gen. Topology 34 (2) (2016), 83–91. (2016) Zbl1365.54002MR3587343
  3. Al-Omari, A., Some operators in ideal topological spaces via cozero sets, Acta Univ. Apulensis 36 (4) (2016), 1–12. (2016) MR3596204
  4. Al-Omari, A., Noiri, T., 10.5269/bspm.v36i4.31125, accepted in Bol. Soc. Paran. Mat. 36 (4) (2018), 121–130. DOI10.5269/bspm.v36i4.31125
  5. Bayhan, S., Kanibir, A., McCluskey, A., Reilly, I.L., 10.2298/FIL1306965B, Filomat 27 (6) (2013), 965–969. (2013) Zbl1324.54021MR3244240DOI10.2298/FIL1306965B
  6. Gillman, L., Jerison, M., Rings of Continuous Functions, Van Nostrand Co., Inc., Princeton, N. J., 1960. (1960) Zbl0093.30001MR0116199
  7. Hdeib, H.Z., ω -closed mappings, Rev. Colombiana Mat. 16 (1–2) (1982), 65–78. (1982) Zbl0574.54008MR0677814
  8. Kohli, J.K., Singh, D., Kumar, R., 10.4995/agt.2008.1804, Appl. Gen. Topology 9 (2) (2008), 239–251. (2008) Zbl1181.54020MR2560172DOI10.4995/agt.2008.1804
  9. Singal, M.K., Niemse, S.B., z -continuous mappings, Math. Student 66 (1997), 193–210. (1997) MR1626266

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.