Characterizations of -Lindelöf spaces
Archivum Mathematicum (2017)
- Volume: 053, Issue: 2, page 93-99
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAl-Omari, Ahmad, and Noiri, Takashi. "Characterizations of $z$-Lindelöf spaces." Archivum Mathematicum 053.2 (2017): 93-99. <http://eudml.org/doc/288222>.
@article{Al2017,
abstract = {A topological space $(X, \tau )$ is said to be $z$-Lindelöf [1] if every cover of $X$ by cozero sets of $(X,\tau )$ admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of $z$-Lindelöf spaces.},
author = {Al-Omari, Ahmad, Noiri, Takashi},
journal = {Archivum Mathematicum},
keywords = {cozero set; $\omega $-open set; Lindelöf; $z$-Lindelöf},
language = {eng},
number = {2},
pages = {93-99},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Characterizations of $z$-Lindelöf spaces},
url = {http://eudml.org/doc/288222},
volume = {053},
year = {2017},
}
TY - JOUR
AU - Al-Omari, Ahmad
AU - Noiri, Takashi
TI - Characterizations of $z$-Lindelöf spaces
JO - Archivum Mathematicum
PY - 2017
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 053
IS - 2
SP - 93
EP - 99
AB - A topological space $(X, \tau )$ is said to be $z$-Lindelöf [1] if every cover of $X$ by cozero sets of $(X,\tau )$ admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of $z$-Lindelöf spaces.
LA - eng
KW - cozero set; $\omega $-open set; Lindelöf; $z$-Lindelöf
UR - http://eudml.org/doc/288222
ER -
References
top- Al-Ani, A.T., -compact spaces, Journal of University of Anbar for Pure Science 3 (1) (2009), 118–121. (2009)
- Al-Omari, A., On ideal topological spaces via cozero sets, Questions Answers Gen. Topology 34 (2) (2016), 83–91. (2016) Zbl1365.54002MR3587343
- Al-Omari, A., Some operators in ideal topological spaces via cozero sets, Acta Univ. Apulensis 36 (4) (2016), 1–12. (2016) MR3596204
- Al-Omari, A., Noiri, T., 10.5269/bspm.v36i4.31125, accepted in Bol. Soc. Paran. Mat. 36 (4) (2018), 121–130. DOI10.5269/bspm.v36i4.31125
- Bayhan, S., Kanibir, A., McCluskey, A., Reilly, I.L., 10.2298/FIL1306965B, Filomat 27 (6) (2013), 965–969. (2013) Zbl1324.54021MR3244240DOI10.2298/FIL1306965B
- Gillman, L., Jerison, M., Rings of Continuous Functions, Van Nostrand Co., Inc., Princeton, N. J., 1960. (1960) Zbl0093.30001MR0116199
- Hdeib, H.Z., -closed mappings, Rev. Colombiana Mat. 16 (1–2) (1982), 65–78. (1982) Zbl0574.54008MR0677814
- Kohli, J.K., Singh, D., Kumar, R., 10.4995/agt.2008.1804, Appl. Gen. Topology 9 (2) (2008), 239–251. (2008) Zbl1181.54020MR2560172DOI10.4995/agt.2008.1804
- Singal, M.K., Niemse, S.B., -continuous mappings, Math. Student 66 (1997), 193–210. (1997) MR1626266
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.