A new characterization of symmetric group by NSE

Azam Babai; Zeinab Akhlaghi

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 2, page 427-437
  • ISSN: 0011-4642

Abstract

top
Let G be a group and ω ( G ) be the set of element orders of G . Let k ω ( G ) and m k ( G ) be the number of elements of order k in G . Let nse ( G ) = { m k ( G ) : k ω ( G ) } . Assume r is a prime number and let G be a group such that nse ( G ) = nse ( S r ) , where S r is the symmetric group of degree r . In this paper we prove that G S r , if r divides the order of G and r 2 does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.

How to cite

top

Babai, Azam, and Akhlaghi, Zeinab. "A new characterization of symmetric group by NSE." Czechoslovak Mathematical Journal 67.2 (2017): 427-437. <http://eudml.org/doc/288225>.

@article{Babai2017,
abstract = {Let $G$ be a group and $\omega (G)$ be the set of element orders of $G$. Let $k\in \omega (G)$ and $m_k(G)$ be the number of elements of order $k$ in $G$. Let nse$(G) = \lbrace m_k(G) \colon k \in \omega (G)\rbrace $. Assume $r$ is a prime number and let $G$ be a group such that nse$(G)=$ nse$(S_r)$, where $S_r$ is the symmetric group of degree $r$. In this paper we prove that $G\cong S_r$, if $r$ divides the order of $G$ and $r^2$ does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.},
author = {Babai, Azam, Akhlaghi, Zeinab},
journal = {Czechoslovak Mathematical Journal},
keywords = {set of the numbers of elements of the same order; prime graph},
language = {eng},
number = {2},
pages = {427-437},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new characterization of symmetric group by NSE},
url = {http://eudml.org/doc/288225},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Babai, Azam
AU - Akhlaghi, Zeinab
TI - A new characterization of symmetric group by NSE
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 427
EP - 437
AB - Let $G$ be a group and $\omega (G)$ be the set of element orders of $G$. Let $k\in \omega (G)$ and $m_k(G)$ be the number of elements of order $k$ in $G$. Let nse$(G) = \lbrace m_k(G) \colon k \in \omega (G)\rbrace $. Assume $r$ is a prime number and let $G$ be a group such that nse$(G)=$ nse$(S_r)$, where $S_r$ is the symmetric group of degree $r$. In this paper we prove that $G\cong S_r$, if $r$ divides the order of $G$ and $r^2$ does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.
LA - eng
KW - set of the numbers of elements of the same order; prime graph
UR - http://eudml.org/doc/288225
ER -

References

top
  1. Ahanjideh, N., Asadian, B., 10.1142/S0219498815500127, J. Algebra Appl. 14 (2015), Article ID 1550012, 14 pages. (2015) Zbl1320.20016MR3270051DOI10.1142/S0219498815500127
  2. Asboei, A. K., 10.1142/S0219498813500400, J. Algebra Appl. 12 (2013), Article ID 1350040, 5 pages. (2013) Zbl1278.20013MR3063479DOI10.1142/S0219498813500400
  3. Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A., A characterization of symmetric group S r , where r is prime number, Ann. Math. Inform. 40 (2012), 13-23. (2012) Zbl1261.20025MR3005112
  4. Frobenius, G., 10.3931/e-rara-18880, Berl. Ber. (1895), 981-993 German 9999JFM99999 26.0158.01. (1895) DOI10.3931/e-rara-18880
  5. Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics, Harper and Row, Publishers, New York (1968). (1968) Zbl0185.05701MR0231903
  6. Gruenberg, K. W., Roggenkamp, K. W., 10.1112/plms/s3-31.2.149, Proc. Lond. Math. Soc., III. Ser. 31 (1975), 149-166. (1975) Zbl0313.20004MR0374247DOI10.1112/plms/s3-31.2.149
  7. M. Hall, Jr., The Theory of Groups, The Macmillan Company, New York (1959). (1959) Zbl0084.02202MR0103215
  8. Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
  9. Khatami, M., Khosravi, B., Akhlaghi, Z., 10.1007/s00605-009-0168-1, Monatsh. Math. 163 (2011), 39-50. (2011) Zbl1216.20022MR2787581DOI10.1007/s00605-009-0168-1
  10. Kondrat'ev, A. S., Mazurov, V. D., 10.1007/BF02674599, Sib. Math. J. 41 (2000), 294-302 translation from Sib. Mat. Zh. 41 359-369 Russian 2000. (2000) Zbl0956.20007MR1762188DOI10.1007/BF02674599
  11. Shao, C., Jiang, Q., 10.1142/S0219498813500941, J. Algebra Appl. 13 (2014), Article ID 1350094, 9 pages. (2014) Zbl1286.20021MR3119655DOI10.1142/S0219498813500941
  12. Shi, W. J., 10.1515/9783110848397-040, Group Theory Proc. Conf., Singapore, 1987, Walter de Gruyter, Berlin (1989), 531-540. (1989) Zbl0657.20017MR0981868DOI10.1515/9783110848397-040
  13. Weisner, L., 10.2307/2370639, Am. J. Math. 47 (1925), 121-124 9999JFM99999 51.0117.02. (1925) MR1506549DOI10.2307/2370639

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.