A new characterization of symmetric group by NSE
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 2, page 427-437
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBabai, Azam, and Akhlaghi, Zeinab. "A new characterization of symmetric group by NSE." Czechoslovak Mathematical Journal 67.2 (2017): 427-437. <http://eudml.org/doc/288225>.
@article{Babai2017,
abstract = {Let $G$ be a group and $\omega (G)$ be the set of element orders of $G$. Let $k\in \omega (G)$ and $m_k(G)$ be the number of elements of order $k$ in $G$. Let nse$(G) = \lbrace m_k(G) \colon k \in \omega (G)\rbrace $. Assume $r$ is a prime number and let $G$ be a group such that nse$(G)=$ nse$(S_r)$, where $S_r$ is the symmetric group of degree $r$. In this paper we prove that $G\cong S_r$, if $r$ divides the order of $G$ and $r^2$ does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.},
author = {Babai, Azam, Akhlaghi, Zeinab},
journal = {Czechoslovak Mathematical Journal},
keywords = {set of the numbers of elements of the same order; prime graph},
language = {eng},
number = {2},
pages = {427-437},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A new characterization of symmetric group by NSE},
url = {http://eudml.org/doc/288225},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Babai, Azam
AU - Akhlaghi, Zeinab
TI - A new characterization of symmetric group by NSE
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 2
SP - 427
EP - 437
AB - Let $G$ be a group and $\omega (G)$ be the set of element orders of $G$. Let $k\in \omega (G)$ and $m_k(G)$ be the number of elements of order $k$ in $G$. Let nse$(G) = \lbrace m_k(G) \colon k \in \omega (G)\rbrace $. Assume $r$ is a prime number and let $G$ be a group such that nse$(G)=$ nse$(S_r)$, where $S_r$ is the symmetric group of degree $r$. In this paper we prove that $G\cong S_r$, if $r$ divides the order of $G$ and $r^2$ does not divide it. To get the conclusion we make use of some well-known results on the prime graphs of finite simple groups and their components.
LA - eng
KW - set of the numbers of elements of the same order; prime graph
UR - http://eudml.org/doc/288225
ER -
References
top- Ahanjideh, N., Asadian, B., 10.1142/S0219498815500127, J. Algebra Appl. 14 (2015), Article ID 1550012, 14 pages. (2015) Zbl1320.20016MR3270051DOI10.1142/S0219498815500127
- Asboei, A. K., 10.1142/S0219498813500400, J. Algebra Appl. 12 (2013), Article ID 1350040, 5 pages. (2013) Zbl1278.20013MR3063479DOI10.1142/S0219498813500400
- Asboei, A. K., Amiri, S. S. S., Iranmanesh, A., Tehranian, A., A characterization of symmetric group , where is prime number, Ann. Math. Inform. 40 (2012), 13-23. (2012) Zbl1261.20025MR3005112
- Frobenius, G., 10.3931/e-rara-18880, Berl. Ber. (1895), 981-993 German 9999JFM99999 26.0158.01. (1895) DOI10.3931/e-rara-18880
- Gorenstein, D., Finite Groups, Harper's Series in Modern Mathematics, Harper and Row, Publishers, New York (1968). (1968) Zbl0185.05701MR0231903
- Gruenberg, K. W., Roggenkamp, K. W., 10.1112/plms/s3-31.2.149, Proc. Lond. Math. Soc., III. Ser. 31 (1975), 149-166. (1975) Zbl0313.20004MR0374247DOI10.1112/plms/s3-31.2.149
- M. Hall, Jr., The Theory of Groups, The Macmillan Company, New York (1959). (1959) Zbl0084.02202MR0103215
- Huppert, B., 10.1007/978-3-642-64981-3, Die Grundlehren der Mathematischen Wissenschaften in Einzeldarstellungen 134, Springer, Berlin German (1967). (1967) Zbl0217.07201MR0224703DOI10.1007/978-3-642-64981-3
- Khatami, M., Khosravi, B., Akhlaghi, Z., 10.1007/s00605-009-0168-1, Monatsh. Math. 163 (2011), 39-50. (2011) Zbl1216.20022MR2787581DOI10.1007/s00605-009-0168-1
- Kondrat'ev, A. S., Mazurov, V. D., 10.1007/BF02674599, Sib. Math. J. 41 (2000), 294-302 translation from Sib. Mat. Zh. 41 359-369 Russian 2000. (2000) Zbl0956.20007MR1762188DOI10.1007/BF02674599
- Shao, C., Jiang, Q., 10.1142/S0219498813500941, J. Algebra Appl. 13 (2014), Article ID 1350094, 9 pages. (2014) Zbl1286.20021MR3119655DOI10.1142/S0219498813500941
- Shi, W. J., 10.1515/9783110848397-040, Group Theory Proc. Conf., Singapore, 1987, Walter de Gruyter, Berlin (1989), 531-540. (1989) Zbl0657.20017MR0981868DOI10.1515/9783110848397-040
- Weisner, L., 10.2307/2370639, Am. J. Math. 47 (1925), 121-124 9999JFM99999 51.0117.02. (1925) MR1506549DOI10.2307/2370639
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.