Sulle code di potenza di Pareto

Giuseppe Toscani

Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana (2016)

  • Volume: 1, Issue: 1, page 21-30
  • ISSN: 2499-751X

Abstract

top
This article briefly introduces the main similarities between the problem of the trend to equilibrium of the molecules of a rarefied gas and the formation of the power tails in the distribution of wealth in a multi-agent society. The approach of statistical mechanics to the above mentioned problem of economic nature in fact provided in recent years a particularly convincing explanation on the phenomenon of formation of Pareto tails.

How to cite

top

Toscani, Giuseppe. "Sulle code di potenza di Pareto." Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana 1.1 (2016): 21-30. <http://eudml.org/doc/288233>.

@article{Toscani2016,
abstract = {In questo articolo vengono brevemente presentate le principali analogie tra il problema dell'andamento all'equilibrio delle molecole di un gas rarefatto e la formazione delle code di potenza nella distribuzione della ricchezza in una società di agenti. L'approccio della meccanica statistica al succitato problema di origine economica ha fornito infatti in questi ultimi anni una spiegazione particolarmente convincente sul fenomeno della formazione delle code di potenza di Pareto.},
author = {Toscani, Giuseppe},
journal = {Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana},
language = {ita},
month = {4},
number = {1},
pages = {21-30},
publisher = {Unione Matematica Italiana},
title = {Sulle code di potenza di Pareto},
url = {http://eudml.org/doc/288233},
volume = {1},
year = {2016},
}

TY - JOUR
AU - Toscani, Giuseppe
TI - Sulle code di potenza di Pareto
JO - Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
DA - 2016/4//
PB - Unione Matematica Italiana
VL - 1
IS - 1
SP - 21
EP - 30
AB - In questo articolo vengono brevemente presentate le principali analogie tra il problema dell'andamento all'equilibrio delle molecole di un gas rarefatto e la formazione delle code di potenza nella distribuzione della ricchezza in una società di agenti. L'approccio della meccanica statistica al succitato problema di origine economica ha fornito infatti in questi ultimi anni una spiegazione particolarmente convincente sul fenomeno della formazione delle code di potenza di Pareto.
LA - ita
UR - http://eudml.org/doc/288233
ER -

References

top
  1. AMOROSO, L., Ricerche intorno alla curva dei redditi. Ann. Mat. Pura Appl. Ser. 4 21, (1925), 123-159. Zbl51.0405.08MR1553077DOI10.1007/BF02409935
  2. BASSETTI, F., TOSCANI, G., Explicit equilibria in a kinetic model of gambling. Phys. Rev. E81, (2010), 066115. Zbl1335.91049MR2736281DOI10.1103/PhysRevE.81.066115
  3. BENINI, R., Di alcune curve descritte da fenomeni economici aventi relazione colla curva del reddito o con quella del patrimonio. Giornale degli Economisti, Serie II 14, (1897), 177-214. 
  4. BISI, M., SPIGA, G., TOSCANI, G., Kinetic models of conservative economies with wealth redistribution. Commun. Math. Sci.7, (4) (2009), 901-916. Zbl1188.91115MR2604625
  5. BOBYLEV, A.V., The theory of the nonlinear spatially uniform Boltzmann equation for Maxwellian molecules. Sov. Sci. Rev. c7, (1988), 111-233. Zbl0850.76619MR1128328
  6. BOBYLEV, A.V., CARRILLO, J.A., GAMBA, I., On some properties of kinetic and hydrodynamic equations for inelastic interactions. J. Stat. Phys., 98,(2001), 743-773; Erratum on: J. Stat. Phys., 103, (2001), 1137-1138. Zbl1056.76071MR1851370DOI10.1023/A:1010325409175
  7. BOLTZMANN, L., Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsberichte der Akademie der Wissenschaften66, (1995), 275-370, in Lectures on Gas Theory. Berkeley: University of California Press (1964) Translated by S.G. Brush. Reprint of the 1896-1898 Edition. Reprinted by Dover Publ. 
  8. CARRILLO, J.A., TOSCANI, G., Contractive probability metrics and asymptotic behavior of dissipative kinetic equations. Riv. Mat. Univ. Parma6/7, (2007), 75-198. Zbl1142.82018MR2355628
  9. CERCIGNANI, C., The Boltzmann equation and its applications. Springer Series in Applied Mathematical Sciences, Vol. 67, Springer-Verlag, New York1988. Zbl0646.76001MR1313028DOI10.1007/978-1-4612-1039-9
  10. CERCIGNANI, C., ILLNER, R., PULVIRENTI, M., The mathematical theory of dilute gases. Springer Series in Applied Mathematical Sciences, Vol. 106, Springer-Verlag, New York1994. Zbl0813.76001MR1307620DOI10.1007/978-1-4419-8524-8
  11. CHAKRABORTI, A., Distributions of money in models of market economy. Int. J. Modern Phys. C13, (2002), 1315-1321. 
  12. CHAKRABORTI, A., CHAKRABARTI, B.K., Statistical mechanics of money: effects of saving propensity. Eur. Phys. J. B17, (2000), 167-170 
  13. CHATTERJEE, A., CHAKRABARTI, B.K., MANNA, S.S., Pareto law in a kinetic model of market with random saving propensity. Physica A335, (2004), 155-163. MR2048143DOI10.1016/j.physa.2003.11.014
  14. CHATTERJEE, A., CHAKRABARTI, B.K., STINCHCOMBE, R.B., Master equation for a kinetic model of trading market and its analytic solution. Phys. Rev. E72, (2005), 026126. 
  15. CORDIER, S., PARESCHI, L., TOSCANI, G., On a kinetic model for a simple market economy. J. Stat. Phys.120, (2005), 253-277. Zbl1133.91474MR2165531DOI10.1007/s10955-005-5456-0
  16. D'ADDARIO, R., Intorno alla curva dei redditi di Amoroso. Riv. Italiana Statist. Econ. Finanza4, (1) (1932), 723-729. 
  17. D'ADDARIO, R., Ricerche sulla curva dei redditi. Giornale degli Economisti e Annali di Economia Nuova Serie, Anno 8, No. 1/2 (1949), 91-114. 
  18. DRĂGULESCU, A., YAKOVENKO, V.M., Statistical mechanics of money. Eur. Phys. Jour. B17, (2000), 723-729. 
  19. DÜRING, B., MATTHES, D., TOSCANI, G., Kinetic equations modelling wealth redistribution: a comparison of approaches. Phys. Rev. E78, (2008), 056103. MR2551376DOI10.1103/PhysRevE.78.056103
  20. DÜRING, B., MATTHES, D., TOSCANI, G., A Boltzmann type approach to the formation of wealth distribution curves. Riv. Mat. Univ. Parma8, (1) (2009), 199-261. Zbl1189.91097MR2597795
  21. ERNST, M.H., BRITO, R., High energy tails for inelastic Maxwell models. Europhys. Lett.58, (2002), 182-187. 
  22. ERNST, M.H., BRITO, R., Scaling solutions of inelastic Boltzmann equation with over-populated high energy tails. J. Statist. Phys.109, (2002), 407-432. Zbl1015.82030MR1942001DOI10.1023/A:1020437925931
  23. GUALA, S., Taxes in a simple wealth distribution model by inelastically scattering particles. Interdisciplinary description of complex systems7, (2009), 1-7. 
  24. MAJORANA, E., Il valore delle leggi statistiche nella fisica e nelle scienze sociali. Scientia36, (1942), 58-66. 
  25. MALDARELLA, D., PARESCHI, L., Kinetic models for socioeconomic dynamics of speculative markets. Physica A391, (2012), 715-730. 
  26. MATTHES, D., TOSCANI, G., On steady distributions of kinetic models of conservative economies. J. Stat. Phys.130, (2008), 1087-1117. Zbl1138.91020MR2379241DOI10.1007/s10955-007-9462-2
  27. G. NALDI, L. PARESCHI, G. TOSCANI eds., Mathematical modelling of collective behavior in socio-economic and life sciences. Birkhauser, Boston2010. Zbl1200.91010MR2761862DOI10.1007/978-0-8176-4946-3
  28. PARESCHI, L., TOSCANI, G., Interacting multiagent systems: kinetic equations and Monte Carlo methods. Oxford University Press, Oxford2014. Zbl1330.93004
  29. PARESCHI, L., TOSCANI, G., Wealth distribution and collective knowledge. A Boltzmann approach. Phil. Trans. R. Soc. A372, (2014), 20130396. Zbl1353.91036MR3268064DOI10.1098/rsta.2013.0396
  30. PARETO, V., Cours d'èconomie politique. Rouge, Lausanne and Paris, 1897. 
  31. SLANINA, F., Inelastically scattering particles and wealth distribution in an open economy. Phys. Rev. E69, (2004), 046102. 
  32. STANLEY, H.E., AFANASYEV, V., AMARAL, L.A.N., BULDYREV, S.V., GOLDBERGER, A.L., HAVLIN, S., LESCHORN, H., MAASS, P., MANTEGNA, R.N., PENG, C.-K., PRINCE, P.A., SALINGER, M.A., STANLEY, M.H.R., VISWANATHAN, G.M., Anomalous fluctuations in the dynamics of complex systems: from DNA and physiology to econophysics. Physica A224, (1996), 302-321. 
  33. TOSCANI, G., Wealth redistribution in conservative linear kinetic models with taxation. Europhysics Letters88, (1) (2009), 10007. 
  34. TOSCANI, G., VILLANI, C., Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation. Commun. Math. Phys.203 (1999), 667-706. Zbl0944.35066MR1700142DOI10.1007/s002200050631
  35. VILLANI, C., Cercignani's conjecture is sometimes true and always almost true. Commun. Math. Phys.234, (2003), 455-490. Zbl1041.82018MR1964379DOI10.1007/s00220-002-0777-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.