The mathematics of Kuramoto models which describe synchronization phenomena
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana (2016)
- Volume: 1, Issue: 2, page 123-132
- ISSN: 2499-751X
Access Full Article
topAbstract
topHow to cite
topSpigler, Renato. "The mathematics of Kuramoto models which describe synchronization phenomena." Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana 1.2 (2016): 123-132. <http://eudml.org/doc/288243>.
@article{Spigler2016,
abstract = {The so-called "Kuramoto models" and similar ones represent a paradigmatic way to describe a number of synchronization phenomena. These are states into which incoherent systems may go, often as it occurs in phase transition, and concern a variety of cases, ranging form Physics to Neuroscience, from Biology to Engineering and even Social Sciences. They explain, at least qualitatively, a large variety of complex processes. In this paper, we review such models and the underlying mathematics, showing some of their peculiarities.},
author = {Spigler, Renato},
journal = {Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana},
language = {eng},
month = {8},
number = {2},
pages = {123-132},
publisher = {Unione Matematica Italiana},
title = {The mathematics of Kuramoto models which describe synchronization phenomena},
url = {http://eudml.org/doc/288243},
volume = {1},
year = {2016},
}
TY - JOUR
AU - Spigler, Renato
TI - The mathematics of Kuramoto models which describe synchronization phenomena
JO - Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
DA - 2016/8//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 123
EP - 132
AB - The so-called "Kuramoto models" and similar ones represent a paradigmatic way to describe a number of synchronization phenomena. These are states into which incoherent systems may go, often as it occurs in phase transition, and concern a variety of cases, ranging form Physics to Neuroscience, from Biology to Engineering and even Social Sciences. They explain, at least qualitatively, a large variety of complex processes. In this paper, we review such models and the underlying mathematics, showing some of their peculiarities.
LA - eng
UR - http://eudml.org/doc/288243
ER -
References
top- ACEBRÓN, J.A., BONILLA, L.L., DE LEO, S., and SPIGLER, R., "Breaking the symmetry in bimodal frequency distributions of globally coupled oscillators", Phys. Rev. E57, May 1998, 5287-5290. MR1630298DOI10.1016/S0167-2789(97)00197-8
- ACEBRÓN, J.A. and SPIGLER, R., "Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators", Phys. Rev. Lett.81, 14 September 1998, 229-2232.
- ACEBRÓN, J.A. and SPIGLER, R., "Uncertainty in phasefrequency synchronization of large populations of globally coupled nonlinear oscillators", Phys. D141, Nos. 1-2, July 2000, 65-79. MR1764169DOI10.1016/S0167-2789(00)00029-4
- ACEBRÓN, J.A., BONILLA, L.L., and SPIGLER, R., "Synchronization in populations of globally coupled oscillators with inertial effects", Phys. Rev. E62, September 2000, 3437-3454. MR1788951DOI10.1103/PhysRevE.62.3437
- ACEBRÓN, J.A., LAVRENTIEV, M.M., and SPIGLER, R., "Spectral analysis and computation for the Kuramoto-Sakaguchi integroparabolic equation", IMA J. Numer. Anal.21, no. 1 (2001), 239-263. Zbl0978.65123MR1812274DOI10.1093/imanum/21.1.239
- ACEBRÓN, J.A., BONILLA, L.L., PÉREZ VICENTE, C.J., RITORT, F., and SPIGLER, R., "The Kuramoto model: a simple paradigm for synchronization phenomena", Rev. Modern Phys., 77 (2005), 137-185.
- ACEBRÓN, J.A. and SPIGLER, R., "The TV remote control and beyond: The legacy of Robert Adler", SIAM News, Vol. 40, N. 5, June 2007, pp. 2-3.
- AKHMETOV, D.R., LAVRENTIEV, M.M., and SPIGLER, R., "Nonlinear integroparabolic equations on unbounded domain: Existence of classical solutions with special properties", Siberian Math. J.42 (2001), 495-516. MR1852238DOI10.1023/A:1010423209940
- AKHMETOV, D.R., LAVRENTIEV, M.M., and SPIGLER, R., "Regularizing a nonlinear integroparabolic Fokker-Planck equation with space-periodic solutions: Existence of strong solutions", Siberian Math. J.42 (2001), 693-714. MR1865474DOI10.1023/A:1010445414795
- AKHMETOV, D.R., LAVRENTIEV, M.M., and SPIGLER, R., "Existence and uniqueness of classical solutions to certain nonlinear integrodifferential Fokker-Planck-type equations", Electron. J. Differential Equations, Vol. 2002 (2002), No. 24, pp. 1-17. Zbl1011.35068MR1884993
- AKHMETOV, D.R. and SPIGLER, R., "Uniform and optimal estimates for solutions to singularly perturbed parabolic equations", J. Evol. Equ.7 (2007), 347-372. Zbl1130.35009MR2316482DOI10.1007/s00028-006-0294-3
- BONILLA, L.L., SPIGLER, R., and NEU, J.C., "Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators", J. Statist. Phys.67 (1992), 313-330. Zbl0925.82176MR1159468DOI10.1007/BF01049037
- BONILLA, L.L., PÉREZ VICENTE, C.J., and SPIGLER, R., "Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions", Phys. D, 113 (1998), 79-97. Zbl0935.34031MR1610215DOI10.1016/S0167-2789(97)00187-5
- ERMENTROUT, B., "An adaptive model for synchrony in the firefly Pteroptyx malaccae", J. Math. Biol.29, no. 6 (1991), 571-585. Zbl0719.92009MR1118757DOI10.1007/BF00164052
- KURAMOTO, Y., "Self-entrainment of a population of coupled non-linear oscillators", International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975), pp. 420-422. Lecture Notes in Phys., 39, Springer, Berlin, 1975. Zbl0335.34021MR676492
- KURAMOTO, Y., "Chemical Oscillations, Waves and Turbulence", Springer Series in Synergetics, Springer-Verlag, Berlin, 1984. Zbl0558.76051MR762432DOI10.1007/978-3-642-69689-3
- LAVRENTIEV, M.M., and SPIGLER, R., "Existence and uniqueness of solutions to the Kuramoto-Sakaguchi parabolic integrodifferential equation", Differential Integral Equations13 (2000), 649-667. Zbl0997.35029MR1750044
- LAVRENTIEV, M.M., and SPIGLER, R., "Time-independent estimates and a comparison theorem for a nonlinear integroparabolic equation of the Fokker-Planck type", Differential Integral Equations17 (2004), no. 5-6, 549-570. Zbl1174.35406MR2054934
- LAVRENTIEV, M.M., SPIGLER, R., and TANI, A., "Existence, uniqueness, and regularity for the Kuramoto-Sakaguchi equation with unboundedly supported frequency distribution", Differential Integral Equations, 27, No. 9-10 (2014), 879-892. Zbl1340.35166MR3229095
- SAKAGUCHI, H., "Cooperative phenomena in coupled oscillator systems under external fields", Progr. Theor. Phys.79, 1 (1988), 39-46. MR937229DOI10.1143/PTP.79.39
- SAKAGUCHI, H. and KURAMOTO, Y., "A soluble active rotator model showing phase transitions via mutual entreinment", Progr. Theor. Phys.76, 3 (1986), 576-581. MR869973DOI10.1143/PTP.76.576
- SAKAGUCHI, H., SHINIMOTO, S., and KURAMOTO, Y., "Local and global self-entrainment in oscillator lattices", Progr. Theor. Phys.77, 5 (1987), 1005-1010.
- SARTORETTO, F., SPIGLER, R., and PÉREZ VICENTE, C.J., "Numerical solution of the Kuramoto-Sakaguchi equation governing populations of coupled oscillators", Math. Models Methods Appl. Sci.8 (1998), 1023-1038. Zbl0939.65145MR1646515DOI10.1142/S0218202598000469
- STROGATZ, S.H., and MIROLLO, R., "Stability of incoherence in a population of coupled oscillators", J. Statist. Phys.63, Nos. 3/4 (1991), 613-635. MR1115806DOI10.1007/BF01029202
- TANAKA, H., LICHTENBERG, A.J., and OISHI, S., "Selfsynchronization of coupled oscillators with hysteretic responses", Phys. D100 (1997), 279-300. Zbl0898.70016
- TANAKA, H., LICHTENBERG, A.J., and OISHI, S., "First order phase transition resulting from finite inertia in coupled oscillator systems", Phys. Rev. Lett.78, N. 11 (1997), 2104-2107.
- TURING, A.M., "The chemical basis of morphogenesis", Philos. Trans. R. Soc. Lond., Series B, Biologcal Sciences, 237, No. 641 (1952), 37-72. MR3363444
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.