The mathematics of Kuramoto models which describe synchronization phenomena

Renato Spigler

Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana (2016)

  • Volume: 1, Issue: 2, page 123-132
  • ISSN: 2499-751X

Abstract

top
The so-called "Kuramoto models" and similar ones represent a paradigmatic way to describe a number of synchronization phenomena. These are states into which incoherent systems may go, often as it occurs in phase transition, and concern a variety of cases, ranging form Physics to Neuroscience, from Biology to Engineering and even Social Sciences. They explain, at least qualitatively, a large variety of complex processes. In this paper, we review such models and the underlying mathematics, showing some of their peculiarities.

How to cite

top

Spigler, Renato. "The mathematics of Kuramoto models which describe synchronization phenomena." Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana 1.2 (2016): 123-132. <http://eudml.org/doc/288243>.

@article{Spigler2016,
abstract = {The so-called "Kuramoto models" and similar ones represent a paradigmatic way to describe a number of synchronization phenomena. These are states into which incoherent systems may go, often as it occurs in phase transition, and concern a variety of cases, ranging form Physics to Neuroscience, from Biology to Engineering and even Social Sciences. They explain, at least qualitatively, a large variety of complex processes. In this paper, we review such models and the underlying mathematics, showing some of their peculiarities.},
author = {Spigler, Renato},
journal = {Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana},
language = {eng},
month = {8},
number = {2},
pages = {123-132},
publisher = {Unione Matematica Italiana},
title = {The mathematics of Kuramoto models which describe synchronization phenomena},
url = {http://eudml.org/doc/288243},
volume = {1},
year = {2016},
}

TY - JOUR
AU - Spigler, Renato
TI - The mathematics of Kuramoto models which describe synchronization phenomena
JO - Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
DA - 2016/8//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 123
EP - 132
AB - The so-called "Kuramoto models" and similar ones represent a paradigmatic way to describe a number of synchronization phenomena. These are states into which incoherent systems may go, often as it occurs in phase transition, and concern a variety of cases, ranging form Physics to Neuroscience, from Biology to Engineering and even Social Sciences. They explain, at least qualitatively, a large variety of complex processes. In this paper, we review such models and the underlying mathematics, showing some of their peculiarities.
LA - eng
UR - http://eudml.org/doc/288243
ER -

References

top
  1. ACEBRÓN, J.A., BONILLA, L.L., DE LEO, S., and SPIGLER, R., "Breaking the symmetry in bimodal frequency distributions of globally coupled oscillators", Phys. Rev. E57, May 1998, 5287-5290. MR1630298DOI10.1016/S0167-2789(97)00197-8
  2. ACEBRÓN, J.A. and SPIGLER, R., "Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators", Phys. Rev. Lett.81, 14 September 1998, 229-2232. 
  3. ACEBRÓN, J.A. and SPIGLER, R., "Uncertainty in phasefrequency synchronization of large populations of globally coupled nonlinear oscillators", Phys. D141, Nos. 1-2, July 2000, 65-79. MR1764169DOI10.1016/S0167-2789(00)00029-4
  4. ACEBRÓN, J.A., BONILLA, L.L., and SPIGLER, R., "Synchronization in populations of globally coupled oscillators with inertial effects", Phys. Rev. E62, September 2000, 3437-3454. MR1788951DOI10.1103/PhysRevE.62.3437
  5. ACEBRÓN, J.A., LAVRENTIEV, M.M., and SPIGLER, R., "Spectral analysis and computation for the Kuramoto-Sakaguchi integroparabolic equation", IMA J. Numer. Anal.21, no. 1 (2001), 239-263. Zbl0978.65123MR1812274DOI10.1093/imanum/21.1.239
  6. ACEBRÓN, J.A., BONILLA, L.L., PÉREZ VICENTE, C.J., RITORT, F., and SPIGLER, R., "The Kuramoto model: a simple paradigm for synchronization phenomena", Rev. Modern Phys., 77 (2005), 137-185. 
  7. ACEBRÓN, J.A. and SPIGLER, R., "The TV remote control and beyond: The legacy of Robert Adler", SIAM News, Vol. 40, N. 5, June 2007, pp. 2-3. 
  8. AKHMETOV, D.R., LAVRENTIEV, M.M., and SPIGLER, R., "Nonlinear integroparabolic equations on unbounded domain: Existence of classical solutions with special properties", Siberian Math. J.42 (2001), 495-516. MR1852238DOI10.1023/A:1010423209940
  9. AKHMETOV, D.R., LAVRENTIEV, M.M., and SPIGLER, R., "Regularizing a nonlinear integroparabolic Fokker-Planck equation with space-periodic solutions: Existence of strong solutions", Siberian Math. J.42 (2001), 693-714. MR1865474DOI10.1023/A:1010445414795
  10. AKHMETOV, D.R., LAVRENTIEV, M.M., and SPIGLER, R., "Existence and uniqueness of classical solutions to certain nonlinear integrodifferential Fokker-Planck-type equations", Electron. J. Differential Equations, Vol. 2002 (2002), No. 24, pp. 1-17. Zbl1011.35068MR1884993
  11. AKHMETOV, D.R. and SPIGLER, R., "Uniform and optimal estimates for solutions to singularly perturbed parabolic equations", J. Evol. Equ.7 (2007), 347-372. Zbl1130.35009MR2316482DOI10.1007/s00028-006-0294-3
  12. BONILLA, L.L., SPIGLER, R., and NEU, J.C., "Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators", J. Statist. Phys.67 (1992), 313-330. Zbl0925.82176MR1159468DOI10.1007/BF01049037
  13. BONILLA, L.L., PÉREZ VICENTE, C.J., and SPIGLER, R., "Time-periodic phases in populations of nonlinearly coupled oscillators with bimodal frequency distributions", Phys. D, 113 (1998), 79-97. Zbl0935.34031MR1610215DOI10.1016/S0167-2789(97)00187-5
  14. ERMENTROUT, B., "An adaptive model for synchrony in the firefly Pteroptyx malaccae", J. Math. Biol.29, no. 6 (1991), 571-585. Zbl0719.92009MR1118757DOI10.1007/BF00164052
  15. KURAMOTO, Y., "Self-entrainment of a population of coupled non-linear oscillators", International Symposium on Mathematical Problems in Theoretical Physics (Kyoto Univ., Kyoto, 1975), pp. 420-422. Lecture Notes in Phys., 39, Springer, Berlin, 1975. Zbl0335.34021MR676492
  16. KURAMOTO, Y., "Chemical Oscillations, Waves and Turbulence", Springer Series in Synergetics, Springer-Verlag, Berlin, 1984. Zbl0558.76051MR762432DOI10.1007/978-3-642-69689-3
  17. LAVRENTIEV, M.M., and SPIGLER, R., "Existence and uniqueness of solutions to the Kuramoto-Sakaguchi parabolic integrodifferential equation", Differential Integral Equations13 (2000), 649-667. Zbl0997.35029MR1750044
  18. LAVRENTIEV, M.M., and SPIGLER, R., "Time-independent estimates and a comparison theorem for a nonlinear integroparabolic equation of the Fokker-Planck type", Differential Integral Equations17 (2004), no. 5-6, 549-570. Zbl1174.35406MR2054934
  19. LAVRENTIEV, M.M., SPIGLER, R., and TANI, A., "Existence, uniqueness, and regularity for the Kuramoto-Sakaguchi equation with unboundedly supported frequency distribution", Differential Integral Equations, 27, No. 9-10 (2014), 879-892. Zbl1340.35166MR3229095
  20. SAKAGUCHI, H., "Cooperative phenomena in coupled oscillator systems under external fields", Progr. Theor. Phys.79, 1 (1988), 39-46. MR937229DOI10.1143/PTP.79.39
  21. SAKAGUCHI, H. and KURAMOTO, Y., "A soluble active rotator model showing phase transitions via mutual entreinment", Progr. Theor. Phys.76, 3 (1986), 576-581. MR869973DOI10.1143/PTP.76.576
  22. SAKAGUCHI, H., SHINIMOTO, S., and KURAMOTO, Y., "Local and global self-entrainment in oscillator lattices", Progr. Theor. Phys.77, 5 (1987), 1005-1010. 
  23. SARTORETTO, F., SPIGLER, R., and PÉREZ VICENTE, C.J., "Numerical solution of the Kuramoto-Sakaguchi equation governing populations of coupled oscillators", Math. Models Methods Appl. Sci.8 (1998), 1023-1038. Zbl0939.65145MR1646515DOI10.1142/S0218202598000469
  24. STROGATZ, S.H., and MIROLLO, R., "Stability of incoherence in a population of coupled oscillators", J. Statist. Phys.63, Nos. 3/4 (1991), 613-635. MR1115806DOI10.1007/BF01029202
  25. TANAKA, H., LICHTENBERG, A.J., and OISHI, S., "Selfsynchronization of coupled oscillators with hysteretic responses", Phys. D100 (1997), 279-300. Zbl0898.70016
  26. TANAKA, H., LICHTENBERG, A.J., and OISHI, S., "First order phase transition resulting from finite inertia in coupled oscillator systems", Phys. Rev. Lett.78, N. 11 (1997), 2104-2107. 
  27. TURING, A.M., "The chemical basis of morphogenesis", Philos. Trans. R. Soc. Lond., Series B, Biologcal Sciences, 237, No. 641 (1952), 37-72. MR3363444

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.