The Mathematical Beauty of Nature and Turing Pattern Formation

Deborah Lacitignola

Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana (2016)

  • Volume: 1, Issue: 2, page 93-103
  • ISSN: 2499-751X

Abstract

top
Does it really exist a mathematical beauty of nature? And the revolutionary Turing's idea can be a key to decipher it? In this paper we try to answer these questions by describing the origins, the theoretical basis and the scientific impact of Alan Turing's theory on pattern formation. The picture that emerges is that of a highly topical theory, that still fascinates because of its strong interdisciplinary features and for the many advances that it has allowed to obtain in mathematics as well as in chemistry and in biology.

How to cite

top

Lacitignola, Deborah. "The Mathematical Beauty of Nature and Turing Pattern Formation." Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana 1.2 (2016): 93-103. <http://eudml.org/doc/288248>.

@article{Lacitignola2016,
abstract = {Does it really exist a mathematical beauty of nature? And the revolutionary Turing's idea can be a key to decipher it? In this paper we try to answer these questions by describing the origins, the theoretical basis and the scientific impact of Alan Turing's theory on pattern formation. The picture that emerges is that of a highly topical theory, that still fascinates because of its strong interdisciplinary features and for the many advances that it has allowed to obtain in mathematics as well as in chemistry and in biology.},
author = {Lacitignola, Deborah},
journal = {Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana},
language = {eng},
month = {8},
number = {2},
pages = {93-103},
publisher = {Unione Matematica Italiana},
title = {The Mathematical Beauty of Nature and Turing Pattern Formation},
url = {http://eudml.org/doc/288248},
volume = {1},
year = {2016},
}

TY - JOUR
AU - Lacitignola, Deborah
TI - The Mathematical Beauty of Nature and Turing Pattern Formation
JO - Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
DA - 2016/8//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 93
EP - 103
AB - Does it really exist a mathematical beauty of nature? And the revolutionary Turing's idea can be a key to decipher it? In this paper we try to answer these questions by describing the origins, the theoretical basis and the scientific impact of Alan Turing's theory on pattern formation. The picture that emerges is that of a highly topical theory, that still fascinates because of its strong interdisciplinary features and for the many advances that it has allowed to obtain in mathematics as well as in chemistry and in biology.
LA - eng
UR - http://eudml.org/doc/288248
ER -

References

top
  1. BARD, J., LAUDER, I., How well does Turing's theory of morphogenesis work?, J. Theor. Biol.45 (1974), 501-531. 
  2. BORCKMANS, P., DEWEL, G., DE WIT, A., DULOS, E., BOISSONADE, J., GAUFFRE, F., DE KEPPER, P., Diffusive instabilities and chemical reactions, Int. J. Bif. and Chaos12 (2002), 2307-2332. Zbl1041.92049MR1955990DOI10.1142/S0218127402005881
  3. BOZZINI, B., LACITIGNOLA, D., MELE, C., SGURA, I., Coupling of morphology and chemistry leads to morphogenesis in electrochemical metal growth: a review of the reactiondiffusion approach, Acta Applic. Mathematicae122 (2012), 53-68. Zbl1256.35176MR2993981DOI10.1007/s10440-012-9725-z
  4. BOZZINI, B., LACITIGNOLA, D., MELE, C., SGURA, I., Morphogenesis in metal electrodeposition, Note di Matem.32 (2012), 7-46. Zbl1264.78027MR2986386
  5. BOZZINI, B., LACITIGNOLA, D., SGURA, I., Spatio-temporal organisation in alloy electrodeposition: a morphochemical mathematical model and its experimental validation, Journal of Solid State Electrochemistry17 (2013), 467-479. MR3255052DOI10.1007/s10440-014-9910-3
  6. BOZZINI, B., GAMBINO, G., LACITIGNOLA, D., LUPO, S., SAMMARTINO, M., SGURA, I., Weakly nonlinear analysis of Turing patterns in a morphochemical model for metal growth, Computers & Mathematics with Applications70 (2015), 1948-1969. MR3400498DOI10.1016/j.camwa.2015.08.019
  7. BREDEN, M., LESSARD, J.P., VANICAT, M., Global bifurcation diagrams of steady states of systems of PDEs via rigorous numerics: a 3-component reaction-diffusion system, Acta Applicandae Mathematicae128 (2013), 113152. Zbl1277.65088MR3125637DOI10.1007/s10440-013-9823-6
  8. BUNOW, B., KERNEVEZ, J.P., JOLY, G., THOMAS, D., Pattern formation by reaction-diffusion instabilities: application to morphogenesis in Drosophila, J. Theor. Biol.84 (1980), 629-649. MR580762DOI10.1016/S0022-5193(80)80024-5
  9. CALLAHAN, T.K., KNOBLOCH, E., Symmetry-breaking bifurcations on cubic lattices, Nonlinearity10 (1997), 1179. Zbl0909.58007MR1473379DOI10.1088/0951-7715/10/5/009
  10. CALLAHAN, T.K., KNOBLOCH, E., Pattern formation in three-dimensional reaction-diffusion systems, Physica D132 (1999), 339. Zbl0935.35065MR1701288DOI10.1016/S0167-2789(99)00041-X
  11. CLAXTON, J.H., The determination of patterns with special reference to that of the central primary skin follicles in sheep, J. Theor. Biol.7 (1964), 302-317. 
  12. CRAMPIN, E., GAFFNEY, E.A., MAINI, P.K., Reaction and diffusion on growing domains: scenarios for robust pattern formation, Bulletin Mathematical Biology61 (1999), 1093-1120. Zbl1323.92028
  13. CASTETS, V., DULOS, E., BOISSONADE, J., DE KEPPER, P., Experimental evidence of a sustained standing Turing type nonequilibrium chemical pattern. Phys. Rev. Lett.64 (1990), 2953. 
  14. CRAWFORD, J.D., Introduction to bifurcation theory, Rev. Mod. Phys.63 (1991), 991-1037. MR1154113DOI10.1103/RevModPhys.63.991
  15. CROSS, M.C., HONENBERG, P.C., Pattern formation outside the equilibrium, Reviews in Modern Phys.65 (1993), 851-1112. 
  16. CRUYWAGEN, G.C., MAINI, P.K., MURRAY, J.D., Biological pattern formation on two-dimensional spatial domains: a nonlinear bifurcation analysis, SIAM J. Appl. Math.57 (1993), 1485-1509. Zbl0892.92003MR1484938DOI10.1137/S0036139996297900
  17. EPSTEIN, I.R., POJMAN, J.A., STEINBOCK, O., Introduction: Self-organization in non equilibrium chemical systems, Chaos16 (2006), 037101. Zbl1146.92332
  18. GALILEI, G., Il Saggiatore, 1623. 
  19. GAMBINO, G., LOMBARDO, M.C., SAMMARTINO, M., Turing instability and traveling fronts for a nonlinear reaction-diffusion system with cross-diffusion, Math. Comp. Simul.82 (2012), 1112-1132. Zbl1320.35170MR2903351DOI10.1016/j.matcom.2011.11.004
  20. GAMBINO, G., LOMBARDO, M.C., SAMMARTINO, M., Pattern formation driven by cross-diffusion in a 2D domain, Nonlinear Analysis: Real World Applications14 (2013), 1755-1779. Zbl1270.35088MR3004535DOI10.1016/j.nonrwa.2012.11.009
  21. GARFINKEL, A., TINTUT, Y., PETRASEK, D., BOSTROM, K., DEMER, L.L., Pattern formation by vascular mesenchymal cells, Proc. Nat. Acad. Sci. USA101 (2004), 9247-9250. 
  22. HOUCHMANDZADEH, B., WIESCHAIS, E., LEIBLER, S., Establishment of developmental precision and proportions in the early Drosophila embryo. Nature415 (2002), 798-802. 
  23. HUNDING, A., SORENSEN, P.G., Size adaptation of Turing prepatterns, J. Math. Biol.26 (1988), 27-39. Zbl0631.92003MR929968DOI10.1007/BF00280170
  24. IPSEN, M., HYNNE, F., SORENSEN, P.G., Amplitude equations and chemical reaction-diffusion systems, Int. J. Bifurc. Chaos7 (1997), 1539-1554. Zbl0899.92037
  25. IPSEN, M., HYNNE, F., SORENSEN, P.G., Systematic derivation of amplitude equations and normal forms for dynamical systems, Chaos8 (1998), 834-852. Zbl0987.37074MR1662393DOI10.1063/1.166370
  26. ISHIHARA, S., KANEKO, K., Turing pattern with proportion preservation, J. Theor. Biol.238 (2006), 683-693. MR2207257DOI10.1016/j.jtbi.2005.06.016
  27. JUNG, H.S., FRANCIS-WEST, P.H., WIDELITZ, R.B., JIANG, T.X., TING-BERRETH, S., TICKLE, C., WOLPERT, L., CHUONG, C.M., Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning, Dev. Biol.196 (1998), 11-23. 
  28. KAPRAL, R., SHOWALTER, K., Chemical Waves and Patterns, Kluwer Academic Publishers, 1995. 
  29. KONDO, S., ASAI, R., A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus, Nature376 (1995), 765-768. 
  30. LACITIGNOLA, D., BOZZINI, B., SGURA, I., Spatio-temporal organization in a morphochemical electrodeposition model: analysis and numerical simulation of spiral waves, Acta Applicandae Mathematicae132 (2014), 377-389. Zbl1304.35348MR3255052DOI10.1007/s10440-014-9910-3
  31. LACITIGNOLA, D., BOZZINI, B., SGURA, I., Spatio-temporal organization in a morphochemical electrodeposition model: Hopf and Turing instabilities and their interplay, European Journal of Applied Mathematics26 (2015), 143-173. MR3315051DOI10.1017/S0956792514000370
  32. LEE, K.J., MCCORMICK, W.D., OUYANG, Q., SWINNEY, H.L., Pattern Formation by Interacting Chemical Fronts, Science, New Series 261 (1993), 192-194. 
  33. LEPPANEN, T., KARTTUNEN, M., KASKI, K., BARRIO, R.A., Turing systems as models of complex pattern formation, Braz. J. Phys.34 (2004), 368-372. 
  34. LEPPANEN, T., The Theory of Turing Pattern Formation, in Current Topics in Physics in Honor of Sir Roger Elliot, Imperial College Press, Eds. K. Kaski and R.A. Barrio, 190-227, 2005. 
  35. LI, Y.J., OSLONOVITCH, J., MAZOUZ, N., PLENGE, F., KRISCHER, K., ERTL, G., Turing-type patterns on electrode surfaces, Science291 (2001), 2395- 2398. 
  36. MADZVAMUSE, A., GAFFNEY, E.A., MAINI, P.K., Stability analysis of reaction-diffusion systems with time-dependent coefficients on growing domains, Journal of Mathematical Biology61 (2010), 133-164. Zbl1202.92010MR2643885DOI10.1007/s00285-009-0293-4
  37. MAINI, P.K., CRAMPIN, E.J., MADZVAMUSE, A., WATHEN, A.J., THOMAS, R.D.K., Implications of domain growth in morphogenesis. In Mathematical Modelling & Computing in Biology and Medicine: 5th ESMTB Conf. 2002, vol. 1, 67-73, 2003. MR2093263
  38. MAINI, P.K., Using mathematical models to help understand biological pattern formation. Comptes Rendus Biologies327 (2004), 225-234. 
  39. MAINI, P.K., WOOLLEY, T.E., BAKER, R.E., GAFFNEY, E.A., SEIRIN LEE, S., Turing's model for biological pattern formation & the robustness problem, J.R. Soc.Interface Focus2 (2012), 487- 496. 
  40. MAINI, P.K., And Philip K. Maini Wonders at - Turing's Theory of Morphogenesis in Alan Turing: His Work and Impact, 1st Edition, 684-689, edited by S. Barry Cooper, J. van Leeuwen, 2013. MR3324446DOI10.1016/B978-0-12-386980-7.50030-7
  41. MOU, C., JACKSON, B., SCHNEIDER, P., OVERBEEK, P.A., HEADON, D.J., Generation of the primary hair follicle pattern, Proc. Natl. Acad. Sci. U.S.A.103 (2006), 9075-9080. 
  42. MURRAY, J.D., A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol.88 (1981), 161-199. MR610574DOI10.1016/0022-5193(81)90334-9
  43. MURRAY, J.D., Mathematical Biology II; Spatial models and biomedical applications, 3rd edition, Springer, 2002. MR1952568
  44. NAGORCKA, B.N., MOONEY, J.R., The role of a reaction-diffusion system in the formation of hair fibres, J. Theor. Biol.98 (1982), 575-607. MR684959DOI10.1016/0022-5193(82)90139-4
  45. OTHMER, H.G., PATE, E., Scale-invariance in reaction-diffusion models of spatial pattern formation, Proc. Natl. Acad. Sci.77 (1980), 4180-4184. 
  46. OTHMER, H.G., PAINTER, K., UMULIS, D., XUE, C., The intersection of theory and application in biological pattern formation, Math. Model. Nat. Phenom.4 (2009), 3-79. Zbl1181.35297MR2532425DOI10.1051/mmnp/20094401
  47. OUYANG, Q., SWINNEY, H.L., Transition from a uniform state to hexagonal and striped Turing patterns, Nature352 (1991), 610- 612. 
  48. PAINTER, K.J., MAINI, P.K., OTHMER, H.G., Stripe forma- tion in Juvenile Pomacanthus explained by a generalized Turing mechanism with chemotaxis, PNAS96 (1999), 5549-5554. 
  49. ROTH, S., Mathematics and biology: a Kantian view on the history of pattern formation theory, Dev. Genes Evol.221 (2011), 255-279. 
  50. SAGUÉS, F., EPSTEIN, I.R., Nonlinear Chemical Dynamics, Dalton Trans. (2003), 1201- 1217. 
  51. SHARRATT, M., Galileo: Decisive Innovator. Cambridge: Cambridge University Press, 1994. Zbl0862.01021
  52. SHVARTSMAN, S.Y., MURATOV, C.B., LAUFFENBURGER, D.A., Modeling and computational analysis of EGF receptor-mediated cell communication in Drosophila oogenesis, Development129 (2002), 2577-2589. 
  53. SICK, S., REINKER, S., TIMMER, J., SCHLAKE, T., WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism, Science314 (2006), 1447-1450. 
  54. THOMPSON, D.W., On Growth and Form, Cambridge University Press, 1917. MR6348
  55. TIAN, C., LING, Z., LIN, Z., Turing pattern formation in a predator-prey-mutualist system, Nonlinear Analysis: Real World Applications12 (2011), 3224-3237. Zbl1231.35275MR2832962DOI10.1016/j.nonrwa.2011.05.022
  56. TURING, A.M., Intelligent machinery, In: The Essential Turing, Oxford University Press, 1948, (reprinted 2004). MR1406760DOI10.1093/philmat/4.3.256
  57. TURING, A.M., Computing machinery and intelligence, Mind59 (1950), 433-460. MR37064DOI10.1093/mind/LIX.236.433
  58. TURING, A.M., The chemical bases of morphogenesis, Phil. Trans. Royal Soc. London B237 (1952), 37-72. MR3363444
  59. UMULIS, D.M., OTHMER, H.G., Mechanisms of scaling in pattern formation, Development140 (2013), 4830-4843. 
  60. VANAG, V.K., EPSTEIN, I.R., Design and control of patterns in reaction-diffusion systems, Chaos18 (2008), 1-11. Zbl1163.37381MR2356983DOI10.1063/1.2752494
  61. VANAG, V.K., EPSTEIN, I.R., Pattern formation mechanisms in reaction-diffusion systems, Int. J. Dev. Biol.53 (2009), 673-681. 
  62. VAREA, C., ARAGON, J.L., BARRIO, R.A., Confined Turing patterns in growing systems, Phys. Rev. E56 (1997), 1250-1253. 
  63. WANG, J., WEI, J., SHI, J., Global bifurcation analysis and pattern formation inhomogeneous diffusive predatorprey systems, J. Differential Equations260 (2016), 3495-3523. Zbl1332.35176MR3434407DOI10.1016/j.jde.2015.10.036
  64. WOLPERT, L., Positional information and the spatial pattern of cellar differentiation, J. Theor. Biol.25 (1969), 1-47. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.