Gauge Integral

Roland Coghetto

Formalized Mathematics (2017)

  • Volume: 25, Issue: 3, page 217-225
  • ISSN: 1426-2630

Abstract

top
Some authors have formalized the integral in the Mizar Mathematical Library (MML). The first article in a series on the Darboux/Riemann integral was written by Noboru Endou and Artur Korniłowicz: [6]. The Lebesgue integral was formalized a little later [13] and recently the integral of Riemann-Stieltjes was introduced in the MML by Keiko Narita, Kazuhisa Nakasho and Yasunari Shidama [12]. A presentation of definitions of integrals in other proof assistants or proof checkers (ACL2, COQ, Isabelle/HOL, HOL4, HOL Light, PVS, ProofPower) may be found in [10] and [4]. Using the Mizar system [1], we define the Gauge integral (Henstock-Kurzweil) of a real-valued function on a real interval [a, b] (see [2], [3], [15], [14], [11]). In the next section we formalize that the Henstock-Kurzweil integral is linear. In the last section, we verified that a real-valued bounded integrable (in sense Darboux/Riemann [6, 7, 8]) function over a interval a, b is Gauge integrable. Note that, in accordance with the possibilities of the MML [9], we reuse a large part of demonstrations already present in another article. Instead of rewriting the proof already contained in [7] (MML Version: 5.42.1290), we slightly modified this article in order to use directly the expected results.

How to cite

top

Roland Coghetto. "Gauge Integral." Formalized Mathematics 25.3 (2017): 217-225. <http://eudml.org/doc/288312>.

@article{RolandCoghetto2017,
abstract = {Some authors have formalized the integral in the Mizar Mathematical Library (MML). The first article in a series on the Darboux/Riemann integral was written by Noboru Endou and Artur Korniłowicz: [6]. The Lebesgue integral was formalized a little later [13] and recently the integral of Riemann-Stieltjes was introduced in the MML by Keiko Narita, Kazuhisa Nakasho and Yasunari Shidama [12]. A presentation of definitions of integrals in other proof assistants or proof checkers (ACL2, COQ, Isabelle/HOL, HOL4, HOL Light, PVS, ProofPower) may be found in [10] and [4]. Using the Mizar system [1], we define the Gauge integral (Henstock-Kurzweil) of a real-valued function on a real interval [a, b] (see [2], [3], [15], [14], [11]). In the next section we formalize that the Henstock-Kurzweil integral is linear. In the last section, we verified that a real-valued bounded integrable (in sense Darboux/Riemann [6, 7, 8]) function over a interval a, b is Gauge integrable. Note that, in accordance with the possibilities of the MML [9], we reuse a large part of demonstrations already present in another article. Instead of rewriting the proof already contained in [7] (MML Version: 5.42.1290), we slightly modified this article in order to use directly the expected results.},
author = {Roland Coghetto},
journal = {Formalized Mathematics},
keywords = {Gauge integral; Henstock-Kurzweil integral; generalized Riemann integral},
language = {eng},
number = {3},
pages = {217-225},
title = {Gauge Integral},
url = {http://eudml.org/doc/288312},
volume = {25},
year = {2017},
}

TY - JOUR
AU - Roland Coghetto
TI - Gauge Integral
JO - Formalized Mathematics
PY - 2017
VL - 25
IS - 3
SP - 217
EP - 225
AB - Some authors have formalized the integral in the Mizar Mathematical Library (MML). The first article in a series on the Darboux/Riemann integral was written by Noboru Endou and Artur Korniłowicz: [6]. The Lebesgue integral was formalized a little later [13] and recently the integral of Riemann-Stieltjes was introduced in the MML by Keiko Narita, Kazuhisa Nakasho and Yasunari Shidama [12]. A presentation of definitions of integrals in other proof assistants or proof checkers (ACL2, COQ, Isabelle/HOL, HOL4, HOL Light, PVS, ProofPower) may be found in [10] and [4]. Using the Mizar system [1], we define the Gauge integral (Henstock-Kurzweil) of a real-valued function on a real interval [a, b] (see [2], [3], [15], [14], [11]). In the next section we formalize that the Henstock-Kurzweil integral is linear. In the last section, we verified that a real-valued bounded integrable (in sense Darboux/Riemann [6, 7, 8]) function over a interval a, b is Gauge integrable. Note that, in accordance with the possibilities of the MML [9], we reuse a large part of demonstrations already present in another article. Instead of rewriting the proof already contained in [7] (MML Version: 5.42.1290), we slightly modified this article in order to use directly the expected results.
LA - eng
KW - Gauge integral; Henstock-Kurzweil integral; generalized Riemann integral
UR - http://eudml.org/doc/288312
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.