About Quotient Orders and Ordering Sequences

Sebastian Koch

Formalized Mathematics (2017)

  • Volume: 25, Issue: 2, page 121-139
  • ISSN: 1426-2630

Abstract

top
In preparation for the formalization in Mizar [4] of lotteries as given in [14], this article closes some gaps in the Mizar Mathematical Library (MML) regarding relational structures. The quotient order is introduced by the equivalence relation identifying two elements x, y of a preorder as equivalent if x ⩽ y and y ⩽ x. This concept is known (see e.g. chapter 5 of [19]) and was first introduced into the MML in [13] and that work is incorporated here. Furthermore given a set A, partition D of A and a finite-support function f : A → ℝ, a function Σf : D → ℝ, Σf (X)= ∑x∈X f(x) can be defined as some kind of natural “restriction” from f to D. The first main result of this article can then be formulated as: ∑x∈Af(x)=∑X∈DΣf(X)(=∑X∈D∑x∈Xf(x)) x A f ( x ) = X D Σ f ( X ) = X D x X f ( x ) After that (weakly) ascending/descending finite sequences (based on [3]) are introduced, in analogous notation to their infinite counterparts introduced in [18] and [13]. The second main result is that any finite subset of any transitive connected relational structure can be sorted as a ascending or descending finite sequence, thus generalizing the results from [16], where finite sequence of real numbers were sorted. The third main result of the article is that any weakly ascending/weakly descending finite sequence on elements of a preorder induces a weakly ascending/weakly descending finite sequence on the projection of these elements into the quotient order. Furthermore, weakly ascending finite sequences can be interpreted as directed walks in a directed graph, when the set of edges is described by ordered pairs of vertices, which is quite common (see e.g. [10]). Additionally, some auxiliary theorems are provided, e.g. two schemes to find the smallest or the largest element in a finite subset of a connected transitive relational structure with a given property and a lemma I found rather useful: Given two finite one-to-one sequences s, t on a set X, such that rng t ⊆ rng s, and a function f : X → ℝ such that f is zero for every x ∈ rng s rng t, we have ∑ f o s = ∑ f o t.

How to cite

top

Sebastian Koch. "About Quotient Orders and Ordering Sequences." Formalized Mathematics 25.2 (2017): 121-139. <http://eudml.org/doc/288462>.

@article{SebastianKoch2017,
abstract = {In preparation for the formalization in Mizar [4] of lotteries as given in [14], this article closes some gaps in the Mizar Mathematical Library (MML) regarding relational structures. The quotient order is introduced by the equivalence relation identifying two elements x, y of a preorder as equivalent if x ⩽ y and y ⩽ x. This concept is known (see e.g. chapter 5 of [19]) and was first introduced into the MML in [13] and that work is incorporated here. Furthermore given a set A, partition D of A and a finite-support function f : A → ℝ, a function Σf : D → ℝ, Σf (X)= ∑x∈X f(x) can be defined as some kind of natural “restriction” from f to D. The first main result of this article can then be formulated as: ∑x∈Af(x)=∑X∈DΣf(X)(=∑X∈D∑x∈Xf(x)) \[\sum \limits \_\{x \in A\} \{f(x)\} = \sum \limits \_\{X \in D\} \{\Sigma \_f (X)\left( \{ = \sum \limits \_\{X \in D\} \{\sum \limits \_\{x \in X\} \{f(x)\} \} \} \right)\} \] After that (weakly) ascending/descending finite sequences (based on [3]) are introduced, in analogous notation to their infinite counterparts introduced in [18] and [13]. The second main result is that any finite subset of any transitive connected relational structure can be sorted as a ascending or descending finite sequence, thus generalizing the results from [16], where finite sequence of real numbers were sorted. The third main result of the article is that any weakly ascending/weakly descending finite sequence on elements of a preorder induces a weakly ascending/weakly descending finite sequence on the projection of these elements into the quotient order. Furthermore, weakly ascending finite sequences can be interpreted as directed walks in a directed graph, when the set of edges is described by ordered pairs of vertices, which is quite common (see e.g. [10]). Additionally, some auxiliary theorems are provided, e.g. two schemes to find the smallest or the largest element in a finite subset of a connected transitive relational structure with a given property and a lemma I found rather useful: Given two finite one-to-one sequences s, t on a set X, such that rng t ⊆ rng s, and a function f : X → ℝ such that f is zero for every x ∈ rng s rng t, we have ∑ f o s = ∑ f o t.},
author = {Sebastian Koch},
journal = {Formalized Mathematics},
keywords = {quotient order; ordered finite sequences},
language = {eng},
number = {2},
pages = {121-139},
title = {About Quotient Orders and Ordering Sequences},
url = {http://eudml.org/doc/288462},
volume = {25},
year = {2017},
}

TY - JOUR
AU - Sebastian Koch
TI - About Quotient Orders and Ordering Sequences
JO - Formalized Mathematics
PY - 2017
VL - 25
IS - 2
SP - 121
EP - 139
AB - In preparation for the formalization in Mizar [4] of lotteries as given in [14], this article closes some gaps in the Mizar Mathematical Library (MML) regarding relational structures. The quotient order is introduced by the equivalence relation identifying two elements x, y of a preorder as equivalent if x ⩽ y and y ⩽ x. This concept is known (see e.g. chapter 5 of [19]) and was first introduced into the MML in [13] and that work is incorporated here. Furthermore given a set A, partition D of A and a finite-support function f : A → ℝ, a function Σf : D → ℝ, Σf (X)= ∑x∈X f(x) can be defined as some kind of natural “restriction” from f to D. The first main result of this article can then be formulated as: ∑x∈Af(x)=∑X∈DΣf(X)(=∑X∈D∑x∈Xf(x)) \[\sum \limits _{x \in A} {f(x)} = \sum \limits _{X \in D} {\Sigma _f (X)\left( { = \sum \limits _{X \in D} {\sum \limits _{x \in X} {f(x)} } } \right)} \] After that (weakly) ascending/descending finite sequences (based on [3]) are introduced, in analogous notation to their infinite counterparts introduced in [18] and [13]. The second main result is that any finite subset of any transitive connected relational structure can be sorted as a ascending or descending finite sequence, thus generalizing the results from [16], where finite sequence of real numbers were sorted. The third main result of the article is that any weakly ascending/weakly descending finite sequence on elements of a preorder induces a weakly ascending/weakly descending finite sequence on the projection of these elements into the quotient order. Furthermore, weakly ascending finite sequences can be interpreted as directed walks in a directed graph, when the set of edges is described by ordered pairs of vertices, which is quite common (see e.g. [10]). Additionally, some auxiliary theorems are provided, e.g. two schemes to find the smallest or the largest element in a finite subset of a connected transitive relational structure with a given property and a lemma I found rather useful: Given two finite one-to-one sequences s, t on a set X, such that rng t ⊆ rng s, and a function f : X → ℝ such that f is zero for every x ∈ rng s rng t, we have ∑ f o s = ∑ f o t.
LA - eng
KW - quotient order; ordered finite sequences
UR - http://eudml.org/doc/288462
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.