Solvable Leibniz algebras with NF n ⊕ [...] F m 1 nilradical
L.M. Camacho; B.A. Omirov; K.K. Masutova; I.M. Rikhsiboev
Open Mathematics (2017)
- Volume: 15, Issue: 1, page 1371-1388
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topL.M. Camacho, et al. "Solvable Leibniz algebras with NF n ⊕ [...] F m 1 $\begin{array}{} F_{m}^{1} \end{array} $ nilradical." Open Mathematics 15.1 (2017): 1371-1388. <http://eudml.org/doc/288475>.
@article{L2017,
abstract = {All finite-dimensional solvable Leibniz algebras L, having N = NFn⊕ [...] Fm1 $\begin\{array\}\{\} F_\{m\}^\{1\} \end\{array\} $ as the nilradical and the dimension of L equal to n+m+3 (the maximal dimension) are described. NFn and [...] Fm1 $\begin\{array\}\{\} F_\{m\}^\{1\} \end\{array\} $ are the null-filiform and naturally graded filiform Leibniz algebras of dimensions n and m, respectively. Moreover, we show that these algebras are rigid.},
author = {L.M. Camacho, B.A. Omirov, K.K. Masutova, I.M. Rikhsiboev},
journal = {Open Mathematics},
keywords = {Lie algebra; Leibniz algebra; Natural gradation; Null-filiform algebra; Filiform algebra; Solvability; Nilpotence; Nilradical},
language = {eng},
number = {1},
pages = {1371-1388},
title = {Solvable Leibniz algebras with NF n ⊕ [...] F m 1 $\begin\{array\}\{\} F_\{m\}^\{1\} \end\{array\} $ nilradical},
url = {http://eudml.org/doc/288475},
volume = {15},
year = {2017},
}
TY - JOUR
AU - L.M. Camacho
AU - B.A. Omirov
AU - K.K. Masutova
AU - I.M. Rikhsiboev
TI - Solvable Leibniz algebras with NF n ⊕ [...] F m 1 $\begin{array}{} F_{m}^{1} \end{array} $ nilradical
JO - Open Mathematics
PY - 2017
VL - 15
IS - 1
SP - 1371
EP - 1388
AB - All finite-dimensional solvable Leibniz algebras L, having N = NFn⊕ [...] Fm1 $\begin{array}{} F_{m}^{1} \end{array} $ as the nilradical and the dimension of L equal to n+m+3 (the maximal dimension) are described. NFn and [...] Fm1 $\begin{array}{} F_{m}^{1} \end{array} $ are the null-filiform and naturally graded filiform Leibniz algebras of dimensions n and m, respectively. Moreover, we show that these algebras are rigid.
LA - eng
KW - Lie algebra; Leibniz algebra; Natural gradation; Null-filiform algebra; Filiform algebra; Solvability; Nilpotence; Nilradical
UR - http://eudml.org/doc/288475
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.