# Simple modules over Auslander regular rings

Open Mathematics (2017)

- Volume: 15, Issue: 1, page 1618-1622
- ISSN: 2391-5455

## Access Full Article

top## Abstract

top## How to cite

topChonghui Huang, and Lijing Zheng. "Simple modules over Auslander regular rings." Open Mathematics 15.1 (2017): 1618-1622. <http://eudml.org/doc/288589>.

@article{ChonghuiHuang2017,

abstract = {In this paper, we discuss the properties of simple modules over Auslander regular rings with global dimension at most 3. Using grade theory, we show the right projective dimension of [...] ExtΛ1(S,Λ) $\begin\{array\}\{\} \text\{Ext\}_\{\{\it \Lambda \}\}^\{1\}(S,\ \{\it \Lambda \}) \end\{array\} $ is equal to 1 for any simple Λ-module S with gr S = 1. As a result, we give some equivalent characterization of diagonal Auslander regular rings.},

author = {Chonghui Huang, Lijing Zheng},

journal = {Open Mathematics},

keywords = {Auslander regular ring; Diagonal ring; Simple module; Grade},

language = {eng},

number = {1},

pages = {1618-1622},

title = {Simple modules over Auslander regular rings},

url = {http://eudml.org/doc/288589},

volume = {15},

year = {2017},

}

TY - JOUR

AU - Chonghui Huang

AU - Lijing Zheng

TI - Simple modules over Auslander regular rings

JO - Open Mathematics

PY - 2017

VL - 15

IS - 1

SP - 1618

EP - 1622

AB - In this paper, we discuss the properties of simple modules over Auslander regular rings with global dimension at most 3. Using grade theory, we show the right projective dimension of [...] ExtΛ1(S,Λ) $\begin{array}{} \text{Ext}_{{\it \Lambda }}^{1}(S,\ {\it \Lambda }) \end{array} $ is equal to 1 for any simple Λ-module S with gr S = 1. As a result, we give some equivalent characterization of diagonal Auslander regular rings.

LA - eng

KW - Auslander regular ring; Diagonal ring; Simple module; Grade

UR - http://eudml.org/doc/288589

ER -

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.