On subgroups of certain alternating groups

Rudy J. List

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1980)

  • Volume: 68, Issue: 3, page 173-178
  • ISSN: 0392-7881

How to cite

top

List, Rudy J.. "On subgroups of certain alternating groups." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 68.3 (1980): 173-178. <http://eudml.org/doc/288607>.

@article{List1980,
author = {List, Rudy J.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {3},
number = {3},
pages = {173-178},
publisher = {Accademia Nazionale dei Lincei},
title = {On subgroups of certain alternating groups},
url = {http://eudml.org/doc/288607},
volume = {68},
year = {1980},
}

TY - JOUR
AU - List, Rudy J.
TI - On subgroups of certain alternating groups
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1980/3//
PB - Accademia Nazionale dei Lincei
VL - 68
IS - 3
SP - 173
EP - 178
LA - eng
UR - http://eudml.org/doc/288607
ER -

References

top
  1. Appel, K.I. and Parker, E.T. (1967) - On unsolvable groups of degree p = 4q+1, p and q primes, «Can. J. Math.», 19, 538-589. Zbl0166.01903
  2. Cameron, P.J. (1972) - Permutation groups with multiply transitive suborbits, «Proc. London Math. Soc.», (3) 25, 427-440. Zbl0247.20004
  3. Dembowski, P. (1968) - Finite Geometries, Springer-Verlag. Zbl0159.50001
  4. Finkelstein, Larry (1973) - The Maximal Subgroups of Conway's Group C 3 and McLaughlin's Group, «J. Algebra», 25, 58-89. Zbl0263.20010
  5. Hestenes, M.D. and Higman, D.G. (1971) - Rank 3 groups and strongly regular graphs, «SIAM AMS Proc.», IV, 141-159. Zbl0253.05127
  6. Higman, D.G. (1964) - Finite permutation groups of rank 3, «Math. Z.», 86, 145-156. 
  7. Higman, D.G. (1966) - Primitive rank 3 groups with a prime subdegree, «Math. Z.», 91, 70-86. Zbl0136.01402
  8. Higman, D.G. (1970) - A survey of some questions and results about rank 3 permutation groups, «Actes Congres Intern. Math.», 1, 361-365. 
  9. Higman, Graham (1967) - On the simple group of D.G. Higman and C.C. Sims, «Illinois J. Maths.», 13, 74-80. Zbl0165.04001
  10. Ito, N. (1962) - On transitive simple permutation groups of degree 2p, «Math.Z.», 78, 453-468. Zbl0101.26602
  11. Lüneburg, Heinz - Über die Gruppen von Mathieu, «J. Algebra», 10, 194-210. 
  12. Magliveras, S.S. (1970) - The Subgroup Structure of the Higman-Sims Simple Group, Thesis, University of Birgmingham. 
  13. [13 Neumann, P.M. (1969) - Primitive permutation groups of degree 3p, preprint. 
  14. Praeger, Cheryl E. (1973) - On the Sylow Subgroups of Transitive Permutation Groups, «Math. Z.», 134, 179-180. Zbl0255.20001
  15. Praeger, Cheryl E. (1974) - On the Sylow Subgroups of a Doubly Transitive Permutation Group, «Math. Z.», 137, 155-171. Zbl0271.20001
  16. Praeger, Cheryl E. (1975) - On the Sylow Subgroups of a Doubly Transitive Permutation Group II, «Math. Z.», 143, 131-143. Zbl0291.20006
  17. Praeger, Cheryl E. (1975) - On the Sylow Subgroups of a Doubly Transitive Permutation Group III, «Bulletin Aust. Math. Soc.», (2) 13, 211-240. 
  18. Smith, M.S. (1975) - On Rank 3 Permutation Groups, «J. Algebra», 33, 22-42. Zbl0297.20002
  19. Wielandt, H. (1964) - Finite Permutation Groups, «Academic Press». 
  20. Higman, Donald G. and Sims, Charles C. (1968) - A Simple Group of Order 44,552,000, «Math. Z.», 105, 110-113. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.