Sui gruppi Z-sequenziabili

Anna Maria Pagliuca Raugei; Sandra Tucci Scarselli

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1979)

  • Volume: 66, Issue: 2, page 97-102
  • ISSN: 0392-7881

Abstract

top
A finite group is called Z-sequenceable if its non-identity elements can be listed x 1 , x 2 , , x n so that x i x i + 1 = x i + 1 x i for i = 1 , 2 , , n 1 . Various conditions are determined for a group G to be Z-sequenceable. Moreover several well known classes of groups which satisfy such conditions are found out.

How to cite

top

Pagliuca Raugei, Anna Maria, and Tucci Scarselli, Sandra. "Sui gruppi Z-sequenziabili." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 66.2 (1979): 97-102. <http://eudml.org/doc/288923>.

@article{PagliucaRaugei1979,
author = {Pagliuca Raugei, Anna Maria, Tucci Scarselli, Sandra},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {ita},
month = {2},
number = {2},
pages = {97-102},
publisher = {Accademia Nazionale dei Lincei},
title = {Sui gruppi Z-sequenziabili},
url = {http://eudml.org/doc/288923},
volume = {66},
year = {1979},
}

TY - JOUR
AU - Pagliuca Raugei, Anna Maria
AU - Tucci Scarselli, Sandra
TI - Sui gruppi Z-sequenziabili
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1979/2//
PB - Accademia Nazionale dei Lincei
VL - 66
IS - 2
SP - 97
EP - 102
LA - ita
UR - http://eudml.org/doc/288923
ER -

References

top
  1. Friedlander, R.J. (1976) - Sequences in non-abelian groups with distinct partial products; «Aequat. Mat.», 14, 59-66. Zbl0325.20020
  2. Friedlander, R.J. e Miller, M.D. (1977) - On some sequencing problems in finite groups; «Discrete Math.», 19, 77-84. Zbl0376.20020
  3. Gordon, B. (1961) - Sequences in groups with distincts partial products; «Pacific J. Math.», 11, 1309-1313. Zbl0103.26202
  4. Nakanishi, M. (1967) - On a kind of connectivity in finite groups, «Sci. Rep. Tokyo Kyoiku Daigaku», Sect. A9, 158-162. 
  5. Williams, J.S. (1976) - A Sufficient Condition on Centralizers for a Finite Group to Contain a Proper CCT-Subgroup; «Journal of Algebra», 42, 549-556. Zbl0349.20009
  6. Zappa, G. (1965) - Fondamenti di Teoria dei Gruppi; Roma. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.