Theorems of the Cartan-Thullen Type and θ -envelope of Holomorphy for Every Holomorphy Type θ

Luiza A. Moraes

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1980)

  • Volume: 68, Issue: 3, page 165-168
  • ISSN: 0392-7881

How to cite

top

Moraes, Luiza A.. "Theorems of the Cartan-Thullen Type and $\theta$-envelope of Holomorphy for Every Holomorphy Type $\theta$." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 68.3 (1980): 165-168. <http://eudml.org/doc/288953>.

@article{Moraes1980,
author = {Moraes, Luiza A.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {3},
number = {3},
pages = {165-168},
publisher = {Accademia Nazionale dei Lincei},
title = {Theorems of the Cartan-Thullen Type and $\theta$-envelope of Holomorphy for Every Holomorphy Type $\theta$},
url = {http://eudml.org/doc/288953},
volume = {68},
year = {1980},
}

TY - JOUR
AU - Moraes, Luiza A.
TI - Theorems of the Cartan-Thullen Type and $\theta$-envelope of Holomorphy for Every Holomorphy Type $\theta$
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1980/3//
PB - Accademia Nazionale dei Lincei
VL - 68
IS - 3
SP - 165
EP - 168
LA - eng
UR - http://eudml.org/doc/288953
ER -

References

top
  1. Aron, R.M. (1973) - The Bornological Topology on the Space of Holomorphic Mappings on a Banach Space, «Math. Ann.», u. 202, pp. 265-272. Zbl0238.46021
  2. Barroso, J.A. (1971) - Topologias nos Espacos de Aplicaçôes Holomorfas entre Espaços Localmente Convexos, «An. Acad. Brasileira de Ciências», u. 43, nos. 3/4 pp. 527-546. 
  3. Barroso, J.A., Matos, M.C. and Nachbin, L. - On Holomorphy versus Linearity in Classifying Locally Convex Spaces, «Infinite Dimensional Holomorphy and Applications», (Editor: M.C. Matos) - North Holland. Zbl0399.46034
  4. Dineen, S. (1970) - The Cartan-Thullen Theorems for Banach Spaces, «Annal. Scu. Norm. Sup.», Pisa, 24, (4) 667-676. 
  5. Gupta, C.P. (1968) - Malgrange Theorem for Nuclearly entire functions of Bounded Type on a Banach Space, «Inst, de Matemàtica Pura e Aplicada», Rio de Janeiro, Notas de Matematica n. 37. Zbl0182.45402
  6. Matos, M.C. (1970) - Holomorphic Mappings and Domains of Holomorphy, «Monografias do Centro Brasileiro de Pesquisas Fìsicas», n. 27, Rio de Janeiro. 
  7. Matos, M.C. (1972) - Domains of τ -Holomorphy in a Separable Banach space, «Math. Ann.», 195, pp. 273-278. Zbl0215.48302
  8. Matos, M.C. (1974) - On the Cartan-Thullen Theorem for some Sub-algebras of Holomorphic Functions in a Locally Convex Space, «Journal für die reine und angewandte Mathematik», 270, pp. 7-11. Zbl0292.46028
  9. Moraes, L.A. (1977) - Tipos de Holomorfia e Abertos de Runge, «Universidade Federal do Rio de Janeiro, Instituto de Matematica», Rio de Janeiro, Teses de Doutorado n. 7. 
  10. Moraes, L.A. (1979) - Theorems of Cartan-Thullen Type and Runge Domains, «Advances in Holomorphy» (Editor: J.A. Barroso) North Holland, pp. 521-561. Zbl0403.32010
  11. Moraes, L.A. - Envelopes for Types of Holomorphy, «Advances in Functional Analysis, Holomorphy and Approximation Theory», (Editor: S. Machado) - Springer Verlag (to appear). 
  12. Nachbin, L. (1970) - Holomorphic Functions, «Domains of Holomorphy and Local Properties», North Holland. 
  13. Nachbin, L. (1969) - Topology on Spaces of Holomorphic Mappings, «Ergebnisse der Mathematik und Ihrer Grenzebiete», Band 47, Springer-Verlag, Alemanha. Zbl0172.39902
  14. Noverraz, P. (1973) - Pseudo Convexité, Convexité Polynomiale et Domaines d'Holomorphie en Dimension Infinie, «Notas de Matematica», Vol. 48, North-Holland, Holland. Zbl0251.46049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.