Exact controllability of the Euler-Bernoulli equation with L 2 ( Σ ) -control only in the Dirichlet Boundary condition

I. Lasiecka; R. Triggiani

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1988)

  • Volume: 82, Issue: 1, page 35-42
  • ISSN: 0392-7881

Abstract

top
The paper studies the problem of exact controllability of the Euler- Bernoulli equation in a cylinder Ω × [ 0 , T ] of n + 1 , via boundary controls acting on its lateral surface.

How to cite

top

Lasiecka, I., and Triggiani, R.. "Exact controllability of the Euler-Bernoulli equation with $L_{2}(\Sigma)$-control only in the Dirichlet Boundary condition." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 82.1 (1988): 35-42. <http://eudml.org/doc/289034>.

@article{Lasiecka1988,
abstract = {The paper studies the problem of exact controllability of the Euler- Bernoulli equation in a cylinder $\Omega \times \left[0,T\right]$ of $\mathbb\{R\}^\{n+1\}$, via boundary controls acting on its lateral surface.},
author = {Lasiecka, I., Triggiani, R.},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Exact boundary controllability; Euler-Bernoulli equation},
language = {eng},
month = {3},
number = {1},
pages = {35-42},
publisher = {Accademia Nazionale dei Lincei},
title = {Exact controllability of the Euler-Bernoulli equation with $L_\{2\}(\Sigma)$-control only in the Dirichlet Boundary condition},
url = {http://eudml.org/doc/289034},
volume = {82},
year = {1988},
}

TY - JOUR
AU - Lasiecka, I.
AU - Triggiani, R.
TI - Exact controllability of the Euler-Bernoulli equation with $L_{2}(\Sigma)$-control only in the Dirichlet Boundary condition
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1988/3//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 1
SP - 35
EP - 42
AB - The paper studies the problem of exact controllability of the Euler- Bernoulli equation in a cylinder $\Omega \times \left[0,T\right]$ of $\mathbb{R}^{n+1}$, via boundary controls acting on its lateral surface.
LA - eng
KW - Exact boundary controllability; Euler-Bernoulli equation
UR - http://eudml.org/doc/289034
ER -

References

top
  1. BARDOS, C., LEBEAU, G. and RAUCH, R. - Contrôle et stabilisation de l'equation des ondes. Zbl0644.49025
  2. GRISVARD, P. (1967) - Caracterisation de quelques espaces d'interpolation, «Arch. Rat. Mech. Anal.», 25, 40-63. Zbl0187.05901MR213864
  3. KOMORNIK, V. (1987) - Controlabilité exacte en un temps minimal, CRAS Paris, t. 304, Serie 1, n° 9. Zbl0611.49027MR883479
  4. LIONS, J.L. (1986) - Exact controllability, stabilization and perturbations, J. von Neumann Lecture, July. Zbl0644.49028
  5. LIONS, J.L., Paper dedicated to Mizohata. 
  6. LASIECKA, I. and TRIGGIANI, R. - Exact controllability for Euler-Bernoulli equations with controls in the Dirichlet and Neumann boundary conditions: a non-conservative case, «SIAM J. Control & Optimiz.», to appear. Zbl0666.49013MR984832DOI10.1137/0327018
  7. LASIECKA, I. and TRIGGIANI, R. (1986) - Exact controllability for the wave equation with Neumann boundary control, «Applied Mathem. and Optimiz.», to appear. Zbl0666.49012MR974187DOI10.1007/BF01448201
  8. TRIGGIANI, R. (1986) - Exact boundary controllability on L 2 ( Ω ) × H - 1 ( Ω ) for the wave equation with Dirichlet control acting on a portion of the boundary, and related problems, «Applied Mathem. and Optiming.», to appear. Zbl0656.93011MR945765DOI10.1007/BF01443625
  9. ZUAZUA, E., Controlabilité exacte d'un modèle de plaques vibrantes en un temps arbitrairement petit, CRAS Paris, 1. 304, Serie I, n. 7, 1987. Zbl0611.49028MR880573

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.