On a linearity criterion for algebraic systems of divisors on a projective variety

Umberto Bartocci; Lucio Guerra

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1987)

  • Volume: 81, Issue: 4, page 347-359
  • ISSN: 0392-7881

Abstract

top
In the present paper, it is established in any characteristic the validity of a classical theorem of Enriques', stating the linearity of any algebraic system of divisors on a projective variety, which has index 1 and whose generic element is irreducible, as soon as its dimension is at least 2.

How to cite

top

Bartocci, Umberto, and Guerra, Lucio. "On a linearity criterion for algebraic systems of divisors on a projective variety." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 81.4 (1987): 347-359. <http://eudml.org/doc/289051>.

@article{Bartocci1987,
abstract = {In the present paper, it is established in any characteristic the validity of a classical theorem of Enriques', stating the linearity of any algebraic system of divisors on a projective variety, which has index 1 and whose generic element is irreducible, as soon as its dimension is at least 2.},
author = {Bartocci, Umberto, Guerra, Lucio},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Divisors; Algebraic/linear systems; Chow varieties},
language = {eng},
month = {12},
number = {4},
pages = {347-359},
publisher = {Accademia Nazionale dei Lincei},
title = {On a linearity criterion for algebraic systems of divisors on a projective variety},
url = {http://eudml.org/doc/289051},
volume = {81},
year = {1987},
}

TY - JOUR
AU - Bartocci, Umberto
AU - Guerra, Lucio
TI - On a linearity criterion for algebraic systems of divisors on a projective variety
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1987/12//
PB - Accademia Nazionale dei Lincei
VL - 81
IS - 4
SP - 347
EP - 359
AB - In the present paper, it is established in any characteristic the validity of a classical theorem of Enriques', stating the linearity of any algebraic system of divisors on a projective variety, which has index 1 and whose generic element is irreducible, as soon as its dimension is at least 2.
LA - eng
KW - Divisors; Algebraic/linear systems; Chow varieties
UR - http://eudml.org/doc/289051
ER -

References

top
  1. SEGRE, B. (1972) - Prodromi di Geometria Algebrica, Cremonese, Roma. 
  2. ENRIQUES, F. (1893) - Una questione sulla linearità dei sistemi di curve appartenenti ad una superficie algebrica, «Atti Acc. Naz. Lincei», 2, 3-8. JFM25.1215.01
  3. ZARISKI, O. (1971) - Algebraic surfaces, 2nd supplemented ed., Springer. Zbl0010.37103MR469915JFM61.0704.01
  4. BARTOCCI, U. (1973) - On a classical theorem concerning algebraic systems of hypersurfaces in a projective space or in a projective variety, «Atti Acc. Naz. Lincei», 55, 364-376. Zbl0302.14013MR569682
  5. CHOW, W.L. and VAN DER WAERDEN, B.L. (1937) - Zur algebraischen Geometrie IX, «Math. Ann.», 113, 692-704. Zbl0016.04004MR1513117JFM62.0772.02
  6. GUERRA, L. (1985) - On Chow varieties of linear systems of divisors on a projective variety, «Rend. Sem. Mat. Univ. Polit. Torino», 43, 457-466. Zbl0626.14005MR884872
  7. SAMUEL, P. (1967) - Méthodes d'algèbre abstraite en géométrie algébrique, Springer. Zbl0067.38904MR213347
  8. WEIL, A. (1954) - Sur les critères d'équivalence en géométrie algébrique, «Math. Ann.», 128, 95-127. Zbl0057.13002MR65219
  9. SEIDENBERG, A. (1950) - The hyperplane sections of normal varieties, «Trans. A.M.S.», 69, 357-386. Zbl0040.23501MR37548
  10. SAMUEL, P. (1966) - Lectures on old and new results on algebraic curves, «Tata Inst. Fund. Res.», Bombay. Zbl0165.24102MR222088
  11. TATE, J.T. (1974) - The arithmetic of Elliptic Curves, «Inventiones Math.», 23, 179-206. Zbl0296.14018MR419359

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.