On domains with ACC on invertible ideals

Stefania Gabelli

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1988)

  • Volume: 82, Issue: 3, page 419-422
  • ISSN: 0392-7881

Abstract

top
If A is a domain with the ascending chain condition on (integral) invertible ideals, then the group I ( A ) of its invertible ideals is generated by the set I m ( A ) of maximal invertible ideals. In this note we study some properties of I m ( A ) and we prove that, if I ( A ) is a free group on I m ( A ) , then A is a locally factorial Krull domain.

How to cite

top

Gabelli, Stefania. "On domains with ACC on invertible ideals." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 82.3 (1988): 419-422. <http://eudml.org/doc/289065>.

@article{Gabelli1988,
abstract = {If $A$ is a domain with the ascending chain condition on (integral) invertible ideals, then the group $I(A)$ of its invertible ideals is generated by the set $I_\{m\}(A)$ of maximal invertible ideals. In this note we study some properties of $I_\{m\}(A)$ and we prove that, if $I(A)$ is a free group on $I_\{m\}(A)$, then $A$ is a locally factorial Krull domain.},
author = {Gabelli, Stefania},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Krull domain; Locally factorial; Invertible ideal},
language = {eng},
month = {9},
number = {3},
pages = {419-422},
publisher = {Accademia Nazionale dei Lincei},
title = {On domains with ACC on invertible ideals},
url = {http://eudml.org/doc/289065},
volume = {82},
year = {1988},
}

TY - JOUR
AU - Gabelli, Stefania
TI - On domains with ACC on invertible ideals
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1988/9//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 3
SP - 419
EP - 422
AB - If $A$ is a domain with the ascending chain condition on (integral) invertible ideals, then the group $I(A)$ of its invertible ideals is generated by the set $I_{m}(A)$ of maximal invertible ideals. In this note we study some properties of $I_{m}(A)$ and we prove that, if $I(A)$ is a free group on $I_{m}(A)$, then $A$ is a locally factorial Krull domain.
LA - eng
KW - Krull domain; Locally factorial; Invertible ideal
UR - http://eudml.org/doc/289065
ER -

References

top
  1. ANDERSON, D.D., Globalization of some local properties in Krull domains, Proc.AMS, 85 (2) (1982), 141-145. Zbl0498.13009MR652428DOI10.2307/2044267
  2. ANDERSON, D.D. and ANDERSON, D.F., Generalized GCD domains, Comment. Math. Univ. St. Pauli, 28 (2) (1979), 215-221. Zbl0434.13001MR578675
  3. BARUCCI, V., DOBBS, D.E. and FONTANA, M., Conducive integral domains as pullbacks, Manuscripta Math.54, (1986), 261-267. Zbl0585.13013MR819402DOI10.1007/BF01171337
  4. BARUCCI, V. and GABELLI, S., How far is a Mori domain from being a Krull domain?, J. Pure Appl. Algebra, 45 (1987), 101-112. Zbl0623.13008MR889586DOI10.1016/0022-4049(87)90063-6
  5. BARUCCI, V. and GABELLI, S., On the class Group of a Mori domain, J. Algebra, 108 (1987), 161-173. Zbl0623.13009MR887199DOI10.1016/0021-8693(87)90129-3
  6. FOSSUM, R., The divisor Class Group of a Krull domain, Springer-Verlag, 1973. Zbl0256.13001MR382254
  7. GABELLI, S., Completely integrally closed domains and t-ideals, Boll. UMI, (7) 3-B (1989). Zbl0677.13007MR997999
  8. GILMER, R., Multiplicative ideal theory, Queen's Paper in Pure and Applied Mathematics, No 12, 1968. Zbl0804.13001MR229624
  9. GRECO, S., Sugli ideali frazionari invertibili, Rend. Sem. Mat. Padova, 36 (1966), 315-333. Zbl0144.02801MR201461

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.