On domains with ACC on invertible ideals
- Volume: 82, Issue: 3, page 419-422
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topGabelli, Stefania. "On domains with ACC on invertible ideals." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 82.3 (1988): 419-422. <http://eudml.org/doc/289065>.
@article{Gabelli1988,
abstract = {If $A$ is a domain with the ascending chain condition on (integral) invertible ideals, then the group $I(A)$ of its invertible ideals is generated by the set $I_\{m\}(A)$ of maximal invertible ideals. In this note we study some properties of $I_\{m\}(A)$ and we prove that, if $I(A)$ is a free group on $I_\{m\}(A)$, then $A$ is a locally factorial Krull domain.},
author = {Gabelli, Stefania},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Krull domain; Locally factorial; Invertible ideal},
language = {eng},
month = {9},
number = {3},
pages = {419-422},
publisher = {Accademia Nazionale dei Lincei},
title = {On domains with ACC on invertible ideals},
url = {http://eudml.org/doc/289065},
volume = {82},
year = {1988},
}
TY - JOUR
AU - Gabelli, Stefania
TI - On domains with ACC on invertible ideals
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1988/9//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 3
SP - 419
EP - 422
AB - If $A$ is a domain with the ascending chain condition on (integral) invertible ideals, then the group $I(A)$ of its invertible ideals is generated by the set $I_{m}(A)$ of maximal invertible ideals. In this note we study some properties of $I_{m}(A)$ and we prove that, if $I(A)$ is a free group on $I_{m}(A)$, then $A$ is a locally factorial Krull domain.
LA - eng
KW - Krull domain; Locally factorial; Invertible ideal
UR - http://eudml.org/doc/289065
ER -
References
top- ANDERSON, D.D., Globalization of some local properties in Krull domains, Proc.AMS, 85 (2) (1982), 141-145. Zbl0498.13009MR652428DOI10.2307/2044267
- ANDERSON, D.D. and ANDERSON, D.F., Generalized GCD domains, Comment. Math. Univ. St. Pauli, 28 (2) (1979), 215-221. Zbl0434.13001MR578675
- BARUCCI, V., DOBBS, D.E. and FONTANA, M., Conducive integral domains as pullbacks, Manuscripta Math.54, (1986), 261-267. Zbl0585.13013MR819402DOI10.1007/BF01171337
- BARUCCI, V. and GABELLI, S., How far is a Mori domain from being a Krull domain?, J. Pure Appl. Algebra, 45 (1987), 101-112. Zbl0623.13008MR889586DOI10.1016/0022-4049(87)90063-6
- BARUCCI, V. and GABELLI, S., On the class Group of a Mori domain, J. Algebra, 108 (1987), 161-173. Zbl0623.13009MR887199DOI10.1016/0021-8693(87)90129-3
- FOSSUM, R., The divisor Class Group of a Krull domain, Springer-Verlag, 1973. Zbl0256.13001MR382254
- GABELLI, S., Completely integrally closed domains and t-ideals, Boll. UMI, (7) 3-B (1989). Zbl0677.13007MR997999
- GILMER, R., Multiplicative ideal theory, Queen's Paper in Pure and Applied Mathematics, No 12, 1968. Zbl0804.13001MR229624
- GRECO, S., Sugli ideali frazionari invertibili, Rend. Sem. Mat. Padova, 36 (1966), 315-333. Zbl0144.02801MR201461
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.