Sharp regularity theory for second order hyperbolic equations of Neumann type

Irena Lasiecka; Roberto Triggiani

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1989)

  • Volume: 83, Issue: 1, page 109-113
  • ISSN: 0392-7881

Abstract

top
This note provides sharp regularity results for general, time-independent, second order, hyperbolic equations with non-homogeneous data of Neumann type.

How to cite

top

Lasiecka, Irena, and Triggiani, Roberto. "Sharp regularity theory for second order hyperbolic equations of Neumann type." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 83.1 (1989): 109-113. <http://eudml.org/doc/289111>.

@article{Lasiecka1989,
abstract = {This note provides sharp regularity results for general, time-independent, second order, hyperbolic equations with non-homogeneous data of Neumann type.},
author = {Lasiecka, Irena, Triggiani, Roberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Hyperbolic partial differential equations},
language = {eng},
month = {12},
number = {1},
pages = {109-113},
publisher = {Accademia Nazionale dei Lincei},
title = {Sharp regularity theory for second order hyperbolic equations of Neumann type},
url = {http://eudml.org/doc/289111},
volume = {83},
year = {1989},
}

TY - JOUR
AU - Lasiecka, Irena
AU - Triggiani, Roberto
TI - Sharp regularity theory for second order hyperbolic equations of Neumann type
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1989/12//
PB - Accademia Nazionale dei Lincei
VL - 83
IS - 1
SP - 109
EP - 113
AB - This note provides sharp regularity results for general, time-independent, second order, hyperbolic equations with non-homogeneous data of Neumann type.
LA - eng
KW - Hyperbolic partial differential equations
UR - http://eudml.org/doc/289111
ER -

References

top
  1. LIONS, J.L., private communication, May 1984. 
  2. LIONS, J.L. and MAGENES, E., 1972. Nonhomogeneous boundary value problems and applications. Vols. I, II, Springer-Verlag, Berlin-Heidelberg-New York. Zbl0227.35001
  3. LASIECKA, I. and TRIGGIANI, R., 1981. A cosine operator approach to modelling L 2 , T ; L 2 ( Γ ) -boundary input hyperbolic equations. Applied Mathem. & Optimiz., 7: 35-93. Zbl0473.35022MR600559DOI10.1007/BF01442108
  4. LASIECKA, I. and TRIGGIANI, R., 1983. Regularity of hyperbolic equations under L 2 , T ; L 2 ( Γ ) -boundary terms. Applied Mathem. & Optimiz., 10: 275-286. Zbl0526.35049MR722491DOI10.1007/BF01448390
  5. LASIECKA, I. and TRIGGIANI, R., 1989. Trace regularity of the solutions of the wave equations with homogeneous Neumann boundary conditions. J.M.A.A., 141: 49-71. Zbl0686.35029MR1004583DOI10.1016/0022-247X(89)90205-9
  6. LASIECKA, I., LIONS, J.L. and TRIGGIANI, R., 1986. Nonhomogeneous boundary value problems for second order hyperbolic operators. J. de Mathématiques Pures et Appliquées, 65: 149-192. Zbl0631.35051MR867669
  7. MIYATAKE, S., 1973. Mixed problems for hyperbolic equations of second order. J. Math. Kyoto University, 13: 435-487. Zbl0281.35052MR333467DOI10.1215/kjm/1250523319
  8. SAKAMOTO, R., 1970. Mixed problems for hyperbolic equations. I, II. J. Math. Kyoto University, 10-2: 343-373 and 10-3: 403-417. Zbl0203.10001MR283400DOI10.1215/kjm/1250523767
  9. SYMES, W.W., 1983. A trace theorem for solutions of the wave equation and the remote determination of acoustic sources. Mathematical Methods in the Applied Sciences, 5: 131-152. Zbl0528.35085MR703950DOI10.1002/mma.1670050110
  10. TRIGGIANI, R., 1978. A cosine operator approach to modeling L 2 , T ; L 2 ( Γ ) -boundary input problems for hyperbolic systems. In «Proceedings 8th IFIP Conference on Optimization Techniques, University of Würzburg, West Germany 1977», Springer-Verlag, Lecture Notes CIS M6: 380-390. 
  11. LASIECKA, I. and TRIGGIANI, R., 1988. A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations. Proceedings Americ. Mathem. Soc., 104: 745-755. Zbl0699.47034MR964851DOI10.2307/2046785
  12. LASIECKA, I. and TRIGGIANI, R., Sharp regularity theory for second order hyperbolic equations of Neumann type. Part I: L 2 non-homodeneous data. Annali di Matematica Pura e Applicata, to appear. Zbl0742.35015
  13. LASIECKA, I. and TRIGGIANI, R., 1989. Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. Part II: General boundary data. J. Differ. Eqts., to appear. Zbl0776.35030MR1133544DOI10.1016/0022-0396(91)90106-J

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.