Homogenization of weakly almost-periodic functionals
- Volume: 81, Issue: 1, page 29-33
- ISSN: 0392-7881
Access Full Article
topAbstract
top Then f can be homogenized; that is there exists a function \Psi depending only on z such that the functionals \int_{\Omega}f\left(\frac{x}{\epsilon},Du(x)\right)\,dx\qquad u\in H^{1,p}(% \Omega;\mathbb{R}^{m})
converge, as \epsilon goes to 0 (in the sense of \Gamma-convergence) to \int_{\Omega}\Psi(Du(x))\,dx.
Moreover an asymptotic formula for \Psi can be given.
How to cite
topReferences
top- ACERBI, E. e FUSCO, N. (1986) - Semicontinuity problems in the Calculus of Variations, «Arch. Rational Mech. Anal.», 86, 125-145. Zbl0565.49010MR751305DOI10.1007/BF00275731
- BESICOVITCH, A. (1932) - Almost Periodic Functions. Cambridge1932. Zbl0004.25303JFM58.0264.02
- BRAIDES, A. (1983) - Omogeneizzazione di integrali non coercivi, «Ricerche di Mat.», 32, 437-468. MR766686
- BRAIDES, A. (1985) - Homogenization of some almost periodic coercive functional, «Rend. Accad. Naz. Sci. detta dei XL» , 103, 313-322. Zbl0582.49014MR899255
- DE GIORGI, E. (1984) - G-operators and \Gamma-convergence. Proc. Intern. Congr. of Math. Warsaw 1983, vol. 2. North HollandAmsterdam1984. Zbl0568.35025
- FUSCO, N. (1983) - On the convergence of integral functionals depending on vector-valued functions, «Ric. Mat.», 32, 321-339. Zbl0563.49007MR766684
- KOZLOV, S. (1978) - Averaging Differential Operators with almost-periodic rapidly oscillating coefficients, «Math. USSR Sbornik», 35, 481-498. Zbl0422.35003MR512007
- MARCELLINI, P. (1978) - Periodic solutions and homogenization of nonlinear variational problems, «Ann. Mat. Pura Appl.», 17, 139-152. Zbl0395.49007MR515958DOI10.1007/BF02417888
- MEYERS, N. e ELCRAT, A. (1975) - Some results on regularity for solutions of nonlinear elliptic sistems and quasiregular functions, «Duke Math. J.», 42, 121-136. Zbl0347.35039MR417568