The importance of rational extensions

Frans Loonstra

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1988)

  • Volume: 82, Issue: 4, page 623-628
  • ISSN: 0392-7881

Abstract

top
The rational completion M ¯ of an R -module M can be characterized as a τ M -injective hull of M with respect to a (hereditary) torsion functor τ M depending on M . Properties of a torsion functor depending on an R -module M are studied.

How to cite

top

Loonstra, Frans. "The importance of rational extensions." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 82.4 (1988): 623-628. <http://eudml.org/doc/289196>.

@article{Loonstra1988,
abstract = {The rational completion $\bar\{M\}$ of an $R$-module $M$ can be characterized as a $\tau_\{M\}$-injective hull of $M$ with respect to a (hereditary) torsion functor $\tau_\{M\}$ depending on $M$. Properties of a torsion functor depending on an $R$-module $M$ are studied.},
author = {Loonstra, Frans},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Torsion-functor; Rational extension},
language = {eng},
month = {12},
number = {4},
pages = {623-628},
publisher = {Accademia Nazionale dei Lincei},
title = {The importance of rational extensions},
url = {http://eudml.org/doc/289196},
volume = {82},
year = {1988},
}

TY - JOUR
AU - Loonstra, Frans
TI - The importance of rational extensions
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1988/12//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 4
SP - 623
EP - 628
AB - The rational completion $\bar{M}$ of an $R$-module $M$ can be characterized as a $\tau_{M}$-injective hull of $M$ with respect to a (hereditary) torsion functor $\tau_{M}$ depending on $M$. Properties of a torsion functor depending on an $R$-module $M$ are studied.
LA - eng
KW - Torsion-functor; Rational extension
UR - http://eudml.org/doc/289196
ER -

References

top
  1. GOODEARL, K.R. (1976) - Ring theory, p. 56. MR429962
  2. GOLAN, J.S. (1975) - Localization of non-comm. rings, p. 24. 
  3. GOLDMAN, O. (1969) - Rings and modules of quotients, J. of Algebra, 13, 1969, 10-47. Zbl0201.04002MR245608

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.