On 2 p -dimensional Riemannian manifolds with positive scalar curvature

Domenico Perrone

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1984)

  • Volume: 77, Issue: 3-4, page 91-98
  • ISSN: 0392-7881

How to cite

top

Perrone, Domenico. "On $2p$-dimensional Riemannian manifolds with positive scalar curvature." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 77.3-4 (1984): 91-98. <http://eudml.org/doc/289208>.

@article{Perrone1984,
author = {Perrone, Domenico},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {9},
number = {3-4},
pages = {91-98},
publisher = {Accademia Nazionale dei Lincei},
title = {On $2p$-dimensional Riemannian manifolds with positive scalar curvature},
url = {http://eudml.org/doc/289208},
volume = {77},
year = {1984},
}

TY - JOUR
AU - Perrone, Domenico
TI - On $2p$-dimensional Riemannian manifolds with positive scalar curvature
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1984/9//
PB - Accademia Nazionale dei Lincei
VL - 77
IS - 3-4
SP - 91
EP - 98
LA - eng
UR - http://eudml.org/doc/289208
ER -

References

top
  1. AUBIN, T. (1976) - Equations différentielles non linéaires et problême de Yamabe concernant la courbure scalaire, «J. Math. pures et appl.», 55, 269-296. Zbl0336.53033MR431287
  2. GOLDBERG, S.I. and OKUMURA, M. (1976) - Conformally flat manifolds and a pinching problem on the Ricci tensor, «Proc. Amer. Math. Soc.», 58, 234-236. Zbl0337.53040MR410601
  3. GALLOT, S. and MEYER, D. (1975) - Opérateur de courbure et laplacien des formes différentielles d'une variété Riemannienne, «J. Math. pures et appl.», 54, 259-284. Zbl0316.53036MR454884
  4. PERRONE, D. (1982) - On the minimal eigenvalue of the Laplacian operator for p -forms in conformally flat Riemannian manifolds, «Proc. Amer. Math. Soc.», 86, 103-108. Zbl0492.53032MR663876DOI10.2307/2044406
  5. TACHIBANA, S. (1978) - On the proper space of Δ for m -forms in 2 m dimensional conformally flat Riemannian manifolds, «Nat. Sc. Rep.», Ochanomizu University», 29, 111-115. Zbl0421.53029MR525629
  6. TANI, M. (1967) - On a compact conformally flat space with positive Ricci curvature, «Tôhoku Math. J.», 19, 227-231. Zbl0166.17405MR220213
  7. TANNO, S. (1973) - Compact conformally flat Riemannian manifolds, «J. Differential Geometry», 8, 71-74. Zbl0278.53033MR358626

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.