On -dimensional Riemannian manifolds with positive scalar curvature
- Volume: 77, Issue: 3-4, page 91-98
- ISSN: 0392-7881
Access Full Article
topAbstract
topHow to cite
topPerrone, Domenico. "On $2p$-dimensional Riemannian manifolds with positive scalar curvature." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 77.3-4 (1984): 91-98. <http://eudml.org/doc/289208>.
@article{Perrone1984,
author = {Perrone, Domenico},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {9},
number = {3-4},
pages = {91-98},
publisher = {Accademia Nazionale dei Lincei},
title = {On $2p$-dimensional Riemannian manifolds with positive scalar curvature},
url = {http://eudml.org/doc/289208},
volume = {77},
year = {1984},
}
TY - JOUR
AU - Perrone, Domenico
TI - On $2p$-dimensional Riemannian manifolds with positive scalar curvature
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1984/9//
PB - Accademia Nazionale dei Lincei
VL - 77
IS - 3-4
SP - 91
EP - 98
LA - eng
UR - http://eudml.org/doc/289208
ER -
References
top- AUBIN, T. (1976) - Equations différentielles non linéaires et problême de Yamabe concernant la courbure scalaire, «J. Math. pures et appl.», 55, 269-296. Zbl0336.53033MR431287
- GOLDBERG, S.I. and OKUMURA, M. (1976) - Conformally flat manifolds and a pinching problem on the Ricci tensor, «Proc. Amer. Math. Soc.», 58, 234-236. Zbl0337.53040MR410601
- GALLOT, S. and MEYER, D. (1975) - Opérateur de courbure et laplacien des formes différentielles d'une variété Riemannienne, «J. Math. pures et appl.», 54, 259-284. Zbl0316.53036MR454884
- PERRONE, D. (1982) - On the minimal eigenvalue of the Laplacian operator for -forms in conformally flat Riemannian manifolds, «Proc. Amer. Math. Soc.», 86, 103-108. Zbl0492.53032MR663876DOI10.2307/2044406
- TACHIBANA, S. (1978) - On the proper space of for -forms in dimensional conformally flat Riemannian manifolds, «Nat. Sc. Rep.», Ochanomizu University», 29, 111-115. Zbl0421.53029MR525629
- TANI, M. (1967) - On a compact conformally flat space with positive Ricci curvature, «Tôhoku Math. J.», 19, 227-231. Zbl0166.17405MR220213
- TANNO, S. (1973) - Compact conformally flat Riemannian manifolds, «J. Differential Geometry», 8, 71-74. Zbl0278.53033MR358626
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.