Converging semigroups of holomorphic maps

Marco Abate

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1988)

  • Volume: 82, Issue: 2, page 223-227
  • ISSN: 0392-7881

Abstract

top
In this paper we study the semigroups Φ : + H o l ( D , D ) of holomorphic maps of a strictly convex domain D 𝐂 n into itself. In particular, we characterize the semigroups converging, uniformly on compact subsets, to a holomorphic map h : D 𝐂 n .

How to cite

top

Abate, Marco. "Converging semigroups of holomorphic maps." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 82.2 (1988): 223-227. <http://eudml.org/doc/289235>.

@article{Abate1988,
abstract = {In this paper we study the semigroups $\Phi : \mathbb\{R\}^\{+\} \rightarrow Hol(D,D)$ of holomorphic maps of a strictly convex domain $D \subset \mathbf\{C\}^\{n\}$ into itself. In particular, we characterize the semigroups converging, uniformly on compact subsets, to a holomorphic map $h : D \rightarrow \mathbf\{C\}^\{n\}$.},
author = {Abate, Marco},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {Semigroups of holomorphic maps; Convex domains; Iteration of holomorphic maps; Fixed points},
language = {eng},
month = {6},
number = {2},
pages = {223-227},
publisher = {Accademia Nazionale dei Lincei},
title = {Converging semigroups of holomorphic maps},
url = {http://eudml.org/doc/289235},
volume = {82},
year = {1988},
}

TY - JOUR
AU - Abate, Marco
TI - Converging semigroups of holomorphic maps
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1988/6//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 2
SP - 223
EP - 227
AB - In this paper we study the semigroups $\Phi : \mathbb{R}^{+} \rightarrow Hol(D,D)$ of holomorphic maps of a strictly convex domain $D \subset \mathbf{C}^{n}$ into itself. In particular, we characterize the semigroups converging, uniformly on compact subsets, to a holomorphic map $h : D \rightarrow \mathbf{C}^{n}$.
LA - eng
KW - Semigroups of holomorphic maps; Convex domains; Iteration of holomorphic maps; Fixed points
UR - http://eudml.org/doc/289235
ER -

References

top
  1. ABATE, M.: Horospheres and iterates of holomorphic maps. «Math. Zeit.» 198 (1987) 225-238. Zbl0628.32035MR939538DOI10.1007/BF01163293
  2. ABATE, M.: Common fixed points of commuting holomorphic maps. «Math. Ann.» 283 (1989) 645-655. Zbl0646.32014MR990593DOI10.1007/BF01442858
  3. ABATE, M., VIGUÉ, J-P.: Coomon fixed points in hyperbolic Riemann surfaces and convex domains, Preprint, (1989). Zbl0724.32012MR1065938DOI10.2307/2048745
  4. BERKSON, E. and PORTA, H.: Semigroups of analytic functions and composition operators. «Mich. Math. J.» 25 (1978) 101-115. Zbl0382.47017MR480965
  5. DENJOY, A.: Sur l'itération des fonctions analytiques. «C.R. Acad. Sci. Paris» 182 (1926), 255-257. JFM52.0309.04
  6. KRANTZ, S.G.: Function theory of several complex variables. Wiley, New York, 1982. Zbl0471.32008MR635928
  7. NARASIMHAN, R.: Several complex variables. University of Chicago Press, Chicago, 1971. Zbl0223.32001MR342725
  8. VIGUÉ, J.P.: Points fixes d'applications holomorphes dans un domaine borné convexe de 𝐂 n . «Trans. Amer. Math. Soc.» 289 (1985), 345-353. Zbl0589.32043MR779068DOI10.2307/1999704
  9. WOLFF, J.: Sur l'itération des fonctions holomorphes dans une région, et dont les valeurs appartiennent à cette région. «C.R. Acad. Sci. Paris» 182 (1926), 42-43. JFM52.0309.02
  10. WOLFF, J.: Sur l'itération des fonctions bornées. «C.R. Acad. Sci. Paris» 182 (1926), 200-201. JFM52.0309.03
  11. WOLFF, J.: Sur une généralisation d'un théorème de Schwarz. «C.R. Acad. Sci. Paris» 182 (1926), 918-920. JFM52.0309.05

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.