Existence of discontinuous absolute minima for certain multiple integrals without growth properties

Lamberto Cesari

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1988)

  • Volume: 82, Issue: 4, page 661-671
  • ISSN: 0392-7881

Abstract

top
In the present paper the author discusses certain multiple integrals I ( u ) of the calculus of variations satisfying convexity conditions, and no growth property, and the corresponding Serrin integrals ( u ) , to which the existence theorems in [3,4,5] do not apply. However, in the present paper, the integrals I ( u ) and ( u ) are reduced to simpler form H ( v ) and ( v ) to which the existence theorems above apply. Thus, we derive that I ( u ) ( u ) , H ( v ) ( v ) , we obtain the existence of the absolute minimum for the Serrin forms ( u ) and ( v ) , and such minimum is given by BV functions, possibly discontinuous and not of Sobolev.

How to cite

top

Cesari, Lamberto. "Existence of discontinuous absolute minima for certain multiple integrals without growth properties." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 82.4 (1988): 661-671. <http://eudml.org/doc/289312>.

@article{Cesari1988,
abstract = {In the present paper the author discusses certain multiple integrals $I(u)$ of the calculus of variations satisfying convexity conditions, and no growth property, and the corresponding Serrin integrals $\mathfrak\{I\}(u)$, to which the existence theorems in [3,4,5] do not apply. However, in the present paper, the integrals $I(u)$ and $\mathfrak\{I\}(u)$ are reduced to simpler form $H(v)$ and $\mathcal\{H\}(v)$ to which the existence theorems above apply. Thus, we derive that $I(u) \le \mathfrak\{I\}(u)$, $H(v) \le \mathcal\{H\}(v)$, we obtain the existence of the absolute minimum for the Serrin forms $\mathfrak\{I\}(u)$ and $\mathcal\{H\}(v)$, and such minimum is given by BV functions, possibly discontinuous and not of Sobolev.},
author = {Cesari, Lamberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
keywords = {BV function; Property (Q); Property (F); Serrin integral},
language = {eng},
month = {12},
number = {4},
pages = {661-671},
publisher = {Accademia Nazionale dei Lincei},
title = {Existence of discontinuous absolute minima for certain multiple integrals without growth properties},
url = {http://eudml.org/doc/289312},
volume = {82},
year = {1988},
}

TY - JOUR
AU - Cesari, Lamberto
TI - Existence of discontinuous absolute minima for certain multiple integrals without growth properties
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1988/12//
PB - Accademia Nazionale dei Lincei
VL - 82
IS - 4
SP - 661
EP - 671
AB - In the present paper the author discusses certain multiple integrals $I(u)$ of the calculus of variations satisfying convexity conditions, and no growth property, and the corresponding Serrin integrals $\mathfrak{I}(u)$, to which the existence theorems in [3,4,5] do not apply. However, in the present paper, the integrals $I(u)$ and $\mathfrak{I}(u)$ are reduced to simpler form $H(v)$ and $\mathcal{H}(v)$ to which the existence theorems above apply. Thus, we derive that $I(u) \le \mathfrak{I}(u)$, $H(v) \le \mathcal{H}(v)$, we obtain the existence of the absolute minimum for the Serrin forms $\mathfrak{I}(u)$ and $\mathcal{H}(v)$, and such minimum is given by BV functions, possibly discontinuous and not of Sobolev.
LA - eng
KW - BV function; Property (Q); Property (F); Serrin integral
UR - http://eudml.org/doc/289312
ER -

References

top
  1. CESARI, L. (1936) - Sulle funzioni a variazione limitata, «Annali Scuola Norm. Sup. Pisa» (2) 5, 299-313. MR1556778JFM62.0247.03
  2. CESARI, L. (1983) - Optimization-Theory and Applications, Springer Verlag. Zbl0506.49001MR688142DOI10.1007/978-1-4613-8165-5
  3. CESARI, L., BRANDI, P. e SALVATORI, A. (1988) - Discontinuous solutions in problems of optimization, «Annali Scuola Norm. Sup. Pisa», 15, 219-237. Zbl0673.49020MR1007398
  4. CESARI, L., BRANDI, P. e SALVADORI, A. (1987) - Existence theorems concerning simple integrals of the calculus of variations for discontinuous solutions, «Archive Rat. Mech. Anal.», 98, 307-328. Zbl0618.49004MR872750DOI10.1007/BF00276912
  5. CESARI, L., BRANDI, P. e SALVADORI, A. (1988) - Existence theorems for multiple integrals of the calculus of variations for discontinuous solutions, «Annali Mat. Pura Appl.», (4), 152, 95-121. Zbl0668.49018MR980974DOI10.1007/BF01766143
  6. CESARI, L., BRANDI, P. e SALVADORI, A., Seminormality conditions in the calculus of variations for BV solutions, to appear. Zbl0786.49005MR1199659DOI10.1007/BF01760012
  7. CESARI, L. e PUCCI, P. (1989) - Remarks on discontinuous optimal solutions for simple integrals of the calculus of variations, «Atti Sem. Mat. Fis. Univ. Modena», 37, 335-379. Zbl0713.49001MR1019636
  8. KRICKEBERG, K. (1957) - Distributions, Funktionen beschränkter Variation und Lehesguescher Inhalt nichtparametrischer Flächen, — «Annali Mat. Pura Appl.», (4) 44, 92, 105-133. Zbl0082.26702MR95922

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.