Diffeomorphisms constructively associated with mutually diverging spacetimes which allow a natural identification of event points in general relativity. Part II

Gaetano Zampieri

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1982)

  • Volume: 73, Issue: 6, page 221-225
  • ISSN: 0392-7881

How to cite

top

Zampieri, Gaetano. "Diffeomorphisms constructively associated with mutually diverging spacetimes which allow a natural identification of event points in general relativity. Part II." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 73.6 (1982): 221-225. <http://eudml.org/doc/289332>.

@article{Zampieri1982,
author = {Zampieri, Gaetano},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {eng},
month = {12},
number = {6},
pages = {221-225},
publisher = {Accademia Nazionale dei Lincei},
title = {Diffeomorphisms constructively associated with mutually diverging spacetimes which allow a natural identification of event points in general relativity. Part II},
url = {http://eudml.org/doc/289332},
volume = {73},
year = {1982},
}

TY - JOUR
AU - Zampieri, Gaetano
TI - Diffeomorphisms constructively associated with mutually diverging spacetimes which allow a natural identification of event points in general relativity. Part II
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1982/12//
PB - Accademia Nazionale dei Lincei
VL - 73
IS - 6
SP - 221
EP - 225
LA - eng
UR - http://eudml.org/doc/289332
ER -

References

top
  1. Bressan, A. (1972) - A general interpreted modal calculus, New Haven-London, Yale: University Press. Zbl0255.02015MR401432
  2. Bressan, A. (1974) - On the usefulness of modal logic in the axiomatization of physics, PSA 1972 (Proceeding of 1972 eeting of the Philosophy of Science Association), Dordrecht-Boston: D. Reidel Pub.co. 
  3. Bressan, A. (1981) - On physical possibility, in «Italian studies in the philosophy of science», edited by M.L. Dalla Chiara, ReidelDordrecht. MR604959
  4. Hawking, S. and Ellis, G.F.R. (1973) - The large scale structure of spacetime. Cambridge University Press. Cambridge, England. Zbl0265.53054MR424186
  5. Sachs, R.K. and Wu, H. (1977) - General relativity for mathematicians. Springer-Verlag, Berlin. Zbl0373.53001MR503498
  6. Synge, J.L. (1972) - Relativity: the special theory, North-Holland, Amsterdam. 
  7. Zampieri, G. (1982) - Diffeomorphisms constructively associated with mutually diverging spacetimes which allow a natural identification of event points in general relativity, Part I, to be printed in «Rend. Acc. Naz. Lincei». MR726291

NotesEmbed ?

top

You must be logged in to post comments.