Γ -limiti e minimi di Pareto

Roberto Peirone

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti (1983)

  • Volume: 74, Issue: 6, page 322-330
  • ISSN: 0392-7881

Abstract

top
The notion of Γ -limit is extended from the case of functions with values in 𝐑 ¯ to the case of those with values in an arbitrary complete lattice and the problem of convergence of Pareto minima related to a convex cone is considered.

How to cite

top

Peirone, Roberto. "$\Gamma$-limiti e minimi di Pareto." Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti 74.6 (1983): 322-330. <http://eudml.org/doc/289340>.

@article{Peirone1983,
author = {Peirone, Roberto},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti},
language = {ita},
month = {6},
number = {6},
pages = {322-330},
publisher = {Accademia Nazionale dei Lincei},
title = {$\Gamma$-limiti e minimi di Pareto},
url = {http://eudml.org/doc/289340},
volume = {74},
year = {1983},
}

TY - JOUR
AU - Peirone, Roberto
TI - $\Gamma$-limiti e minimi di Pareto
JO - Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti
DA - 1983/6//
PB - Accademia Nazionale dei Lincei
VL - 74
IS - 6
SP - 322
EP - 330
LA - ita
UR - http://eudml.org/doc/289340
ER -

References

top
  1. Attouch, H. (1979) - Sur la Γ -convergence; Séminaire Brézis-Lions, College de France. 
  2. Aubin, J.P. (1979) — Mathematical methods of game and economic theory, «Studies in Mathematics & its applications», Vol. 7. North-Holland Publ. Comp.Amsterdam, New York, Oxford. Zbl0452.90093MR556865
  3. Aubin, J.P. (1971) - A Pareto minimum principle. Differential games and related topics, H.W. Kuhn e G.P. Szego ed., 147-175, North-HollandPubl. Comp.Amsterdam. MR277459
  4. Birkhoff, G. (1979) - Lattice Theory, «Amer. Math. Soc.», Providence. MR598630
  5. Buttazzo, G. (1977) - Su una definizione generale dei Γ -limiti, «Boll. Un. Math. Ital.», (5) 14 B, 722-744. Zbl0445.49016MR500789
  6. Caligaris, O. e Oliva, P. (1981) - Necessary and sufficient conditions for Pareto problems, «Boll. Un. Mat. Ital.», (5) 18—B, 177-216. Zbl0463.49016MR613381
  7. Cesari, L. e Suryanarayana, M.B. (1978) - An existence theorem for Pareto problems, «Nonlinear Analysis», 2, 225-233. Zbl0383.49003MR512285DOI10.1016/0362-546X(78)90068-8
  8. Cesari, L. e Suryanarayana, M.B. (1976) — Existence theorems for Pareto optimization in Banach spaces, «Bull. Amer. Math. Soc.», 82, 306-308. Zbl0365.49004MR399984
  9. Cesari, L. e Suryanarayana, M.B. (1976) - Existence theorems for Pareto problems and optimizations, Calculus of Variations and Control Theory, D.L. Russel ed., 139-154, Academic Press, New York. MR482479
  10. De Giorgi, E. (1982) — Generalized limits in Calculus of Variations; Topics in Functional Analysis 1980—1981, «Quaderno della Scuola Normale Superiore di Pisa», 117-148. MR671756
  11. De Giorgi, E. (1979) — Convergence problems for functionals and operators; Proceed. Int. Meeting on «Recent Methods in Nonlinear Analysis»Roma8—12 maggio 1978, ed. da E. De Giorgi, E. Magenes, U. Mosco, Pitagora ed., Bologna, 131—188. MR533166
  12. De Giorgi, E. (1980) — New problems in Γ -convergence and G -convergence; Proceed. Meeting on «Free Boundary problems», Pavia sett. otto. 1979, «Istituto Nazionale di Alta Matematica», Roma, vol. II, 183-194. MR630747
  13. De Giorgi, E. e Franzoni, T. (1975) — Su un tipo di convergenza variazionale, «Atti Accad. Naz. Lincei, Rend. Cl. Sci. Mat. Fis. Natur.», (8) 58, 842-850. MR448194
  14. Kuratowski, K. (1966) - Topology; Academic Press, New York. MR217751
  15. Peirone, R. (1981) — Γ —convergenza per funzioni a valori vettoriali; tesi di laurea, Genova. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.