Soluzioni omocline a varietà invarianti: un approccio variazionale
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-A, Issue: 3, page 539-542
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- AMBROSETTI, A., e BADIALE, M., Homoclinics: Poincaré-Melnikov type results via a variational approach., Ann. Inst. H. Poincaré Anal. Non Linéaire15, 2 (1998), 233-252. Zbl1004.37043
- BERNARD, P., Homoclinic orbit to a center manifold, Calc. Var. Partial Differential Equations, 17, 2 (2003), 121-157. Zbl1187.70039
- BERTI, M., e BOLLE, P., Homoclinics and chaotic behaviour for perturbed second order systems, Ann. Mat. Pura Appl. (4) 176 (1999), 323-378. Zbl0957.37019
- BOLOTIN, S. V., Existence of homoclinic motions, Vestnik Moskov. Univ. Ser. I Mat. Mekh., 6 (1983), 98-103.
- COTI ZELATI, V., EKELAND, I., e SÉRÉ, É., A variational approach to homoclinic orbits in Hamiltonian systems, Math. Ann.288, 1 (1990), 133-160. Zbl0731.34050
- COTI ZELATI, V., e MACRÌ, M., Existence of homoclinic solutions to periodic orbits in a center manifold, Preprint (2002).