Combinatoria e Topologia. Teorema di Quillen e funzioni di Möbius
Bollettino dell'Unione Matematica Italiana (2004)
- Volume: 7-A, Issue: 1, page 143-172
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBrini, Andrea. "Combinatoria e Topologia. Teorema di Quillen e funzioni di Möbius." Bollettino dell'Unione Matematica Italiana 7-A.1 (2004): 143-172. <http://eudml.org/doc/289415>.
@article{Brini2004,
abstract = {The notion of Galois Connections between partially ordered sets is introduced, together with a presentation of some of its main characterizations. This leads to a true understanding of the deep connection that links Galois Connections to Quillen’s Homotopy Type Equivalence Theorem. Furthermore, the notion of Möbius functions of finite lattices is discussed, in order to show its crucial role in Enumerative Combinatorics over Finite Posets and Discrete Probability Theory. Since the values of the Möbius function of a finite lattice may be regarded as reduced Euler Characteristic of suitable topological spaces, a wide variety of combinatorial results can be proved by topological methods. We exploit this point of view by providing elementary proofs of two classical theorems: the «Cross-Cut Theorem» of Rota and the «Vanishing Theorem for not-strongly complemented lattices» of Crapo.},
author = {Brini, Andrea},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {4},
number = {1},
pages = {143-172},
publisher = {Unione Mastematica Italiana},
title = {Combinatoria e Topologia. Teorema di Quillen e funzioni di Möbius},
url = {http://eudml.org/doc/289415},
volume = {7-A},
year = {2004},
}
TY - JOUR
AU - Brini, Andrea
TI - Combinatoria e Topologia. Teorema di Quillen e funzioni di Möbius
JO - Bollettino dell'Unione Matematica Italiana
DA - 2004/4//
PB - Unione Mastematica Italiana
VL - 7-A
IS - 1
SP - 143
EP - 172
AB - The notion of Galois Connections between partially ordered sets is introduced, together with a presentation of some of its main characterizations. This leads to a true understanding of the deep connection that links Galois Connections to Quillen’s Homotopy Type Equivalence Theorem. Furthermore, the notion of Möbius functions of finite lattices is discussed, in order to show its crucial role in Enumerative Combinatorics over Finite Posets and Discrete Probability Theory. Since the values of the Möbius function of a finite lattice may be regarded as reduced Euler Characteristic of suitable topological spaces, a wide variety of combinatorial results can be proved by topological methods. We exploit this point of view by providing elementary proofs of two classical theorems: the «Cross-Cut Theorem» of Rota and the «Vanishing Theorem for not-strongly complemented lattices» of Crapo.
LA - ita
UR - http://eudml.org/doc/289415
ER -
References
top- AIGNER, M., Combinatorial Theory, Springer-Verlag, 1978.
- BARNABEI, M. - BRINI, A. - ROTA, G.-C., Theory of Möbius functions (in russo), Uspehi Mat. Nauk, 41(1986), 113-157. English translation: Theory of Möbius functions, Russian Math. Translations (London Math. Soc.), 41 (1987), 113-157. MR542445
- BENDER, E. A.- GOLDMAN, J. R., On application of Möbius inversion in combinatorial analysis, Amer. Math. Monthly, 82(1975), 789-803. MR854241
- BJORNER, A., Homotopy types of posets and lattice complementation, J. Combin. Theory (A), 30(1981), 90-100. Zbl0442.55011MR376360
- BJORNER, A., Topological Methods, in «Handbook of Combinatorics, vol. II» (R. L. Graham, M. Grotschel, L. Lovasz, Eds.), pp. 1821-1872, North-Holland, Amsterdam, 1995. MR607041
- BRINI, A., Some Homological Properties of Partially Ordered Sets, Advances in Math., 43(1982), 197-201. Zbl0484.06003MR1373690
- CERASOLI, M. - EUGENI, F. - PROTASI, M., «Elementi di Matematica Discreta», Zanichelli, 1988. MR644672
- CRAPO, H., The Möbius function of a lattice, J. Combin. Theory (A), 1(1966), 126-131. Zbl0146.01601MR1093460
- FOLKMAN, J., The homology groups of a lattice, J. Math. Mech., 15(1966), 631-636. Zbl0146.01602MR193018
- LAKSER, H., The homology of a lattice, Disc. Math., 1(1971), 187-192. Zbl0227.06002MR188116
- MATHER, J., Invariance of the homology of a lattice, Proc. Amer. Math. Soc., 17(1966), 1120-1124. Zbl0147.42102MR288755
- MAUNDER, C. R. F., «Algebraic Topology», Van Nostrand, 1970. MR202645
- MUNKRES, J. R., «Elements of Algebraic Topology», Addison-Wesley, 1984. MR1402473
- ORE, O., Galois connections, Trans. Amer. Math. Soc., 55 (1944), 493- 513. Zbl0060.06204
- ROTA, G.-C., On the foundations of combinatorial theory I. Theory of Möbius functions, Z. Wahrsch. Verw. Gebiete, 2(1964), 340-368. MR10555
- QUILLEN, D., Higher algebraic K-theory, I, in «Algebraic K-Theory, 1», Lecture Notes in Mathematics, No. 341, pp. 85-147, Springer-Verlag, Berlin, 1973. MR174487
- QUILLEN, D., Homotopy properties of posets of non-trivial p-subgroups of a group, Advances in Math., 28(1978), 101-128. Zbl0388.55007MR338129
- STANLEY, R. P., «Enumerative Combinatorics. Volume I», Wadsworth and Brooks, 1986. MR493916
- WALKER, J. W., Homotopy Type and Euler Characteristic of Partially Ordered sets, Europ. J. Combinatorics, 2(1981), 373-384. Zbl0472.06004MR847717
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.