Coomologia di De Rham per Log Schemi
Bollettino dell'Unione Matematica Italiana (2005)
- Volume: 8-A, Issue: 3-1, page 537-540
- ISSN: 0392-4041
Access Full Article
topHow to cite
topReferences
top- ILLUSIE, L., KATO, K., NAKAYAMA, C., Quasi-unipotent logarithmic Riemann-Hilbert correspondences, preprint (2003). Zbl1082.14024MR2126784
- ISHIDA, M. N., Torus embeddings and dualizing complex, Tohoku Math. J., 32 (1980), 111-146. Zbl0454.14021MR567836DOI10.2748/tmj/1178229687
- KATO, K., Logarithmic Structures of Fontaine-Illusie, Algebraic Analysis, Geometry and Number Theory, Johns Hopkins University Press, Baltimore (1989), 191-224. Zbl0776.14004MR1463703
- KATO, K., NAKAYAMA, C., Log Betti Cohomology, Log Étale Cohomology, and Log De Rham Cohomology of Log Schemes over \mathbb{C}, Kodai Math. J., 22, (1999), 161-186. MR1700591DOI10.2996/kmj/1138044041