Nuova Frontiera della Ricerca Matematica nelle Scienze Mediche e Biologiche Immunologia e Oncologia Matematica

Nicola Bellomo

Bollettino dell'Unione Matematica Italiana (2006)

  • Volume: 9-A, Issue: 3-1, page 415-448
  • ISSN: 0392-4041

Abstract

top
This paper deals with a critical analysis on the application of mathematics to the study of complex biological systems with particular attention to tumor growth phenomena in competition with immune system. The paper, after a phenomenological description, outlines the mathematical problem of multiscales modelling and shows how the application of models to he study of phenomena of interest in biological science s may generate analytic and computational problems of great interest and complexity. The last part of the paper deals with some aspects of the education in mathematical sciences in the national and European framework.

How to cite

top

Bellomo, Nicola. " Nuova Frontiera della Ricerca Matematica nelle Scienze Mediche e Biologiche Immunologia e Oncologia Matematica." Bollettino dell'Unione Matematica Italiana 9-A.3-1 (2006): 415-448. <http://eudml.org/doc/289585>.

@article{Bellomo2006,
abstract = {Questo lavoro propone una analisi critica sulle applicazioni della matematica allo studio di sistemi biologici complessi con particolare attenzione ai fenomeni della crescita tumorale in competizione con il sistema immunitario. Il lavoro delinea, a seguito di una descrizione fenomenologica, il problema matematico della modellizzazione multiscala e pone in evidenza come l'applicazione dei modelli allo studio di fenomeni di interesse nelle scienze biologiche generino problemi analitici e computazionali di notevole interesse e complessità. L'ultima parte del lavoro tratta alcune questioni relative alla formazione di matematici nel contesto nazionale ed europeo sempre con riferimento al tema trattato.},
author = {Bellomo, Nicola},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3-1},
pages = {415-448},
publisher = {Unione Matematica Italiana},
title = { Nuova Frontiera della Ricerca Matematica nelle Scienze Mediche e Biologiche Immunologia e Oncologia Matematica},
url = {http://eudml.org/doc/289585},
volume = {9-A},
year = {2006},
}

TY - JOUR
AU - Bellomo, Nicola
TI - Nuova Frontiera della Ricerca Matematica nelle Scienze Mediche e Biologiche Immunologia e Oncologia Matematica
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/12//
PB - Unione Matematica Italiana
VL - 9-A
IS - 3-1
SP - 415
EP - 448
AB - Questo lavoro propone una analisi critica sulle applicazioni della matematica allo studio di sistemi biologici complessi con particolare attenzione ai fenomeni della crescita tumorale in competizione con il sistema immunitario. Il lavoro delinea, a seguito di una descrizione fenomenologica, il problema matematico della modellizzazione multiscala e pone in evidenza come l'applicazione dei modelli allo studio di fenomeni di interesse nelle scienze biologiche generino problemi analitici e computazionali di notevole interesse e complessità. L'ultima parte del lavoro tratta alcune questioni relative alla formazione di matematici nel contesto nazionale ed europeo sempre con riferimento al tema trattato.
LA - ita
UR - http://eudml.org/doc/289585
ER -

References

top
  1. MAY, R.M., Uses and abuses of mathematics in biology, Science, 303 (2004), 790-793. 
  2. HARTWELL, H.L., HOPFIELD, J.J., LEIBNER, S. e MURRAY, A.W., From molecular to modular cell biology, Nature, 402 (1999), c47-c52. 
  3. REED, R., Why is mathematical biology so hard?, Notices of the American Mathematical Society, 51 (2004), 338-342. Zbl1168.92303
  4. VICSEK, T., A question of scale, Nature, 418 (2004), 131. 
  5. GATENBY, R.A., VINCENT, T.L. e GILLIES, R.J., Evolutionary dynamics in carcinogenesis, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1619-1638. Zbl1077.92031
  6. NOVAK, M.A. e SIGMUND, K., Evolutionary dynamics of biological games, Science, 303 (2004), 793-799. 
  7. BELLOMO, N. e FORNI, G., Dynamics of tumor interaction with the host immune system, Mathematical Computer Modelling, 20 (1994), 107-122. Zbl0811.92014
  8. GRELLER, L., TOBIN, F. e POSTE, G., Tumor Heterogeneity and progression: conceptual foundation for modeling, Invasion and Metastasis, 16 (1996), 177-208. 
  9. ADAM J. e BELLOMO N., Eds., A Survey of Models on Tumor Immune Systems Dynamics, Birkhäuser, Boston, (1997). 
  10. PREZIOSI L., Ed., Modeling Cancer Growth, CRC-Press - Chapman Hall, Boca Raton, (2003). Zbl1039.92022
  11. CHAPLAIN M.A.J., Ed., Special Issue on Mathematical Modelling and Simulation of Aspects of Cancer Growth, Journal of Theoretical Medicine, 1 (2002), 1-93. 
  12. BELLOMO, N. e MAINI, P.K., Preface and Special issue on Multiscale Cancer Modelling - A New Frontier in Applied Mathematics, Mathematical Models and Methods in Applied Sciences, 15 (2005), iii-viii. 
  13. BELLOMO, N., DE ANGELIS, E. e PREZIOSI, L., Multiscale modeling and mathematical problems related to tumor evolution and medical therapy, Journal of Theoretical Medicine, 5 (2003), 111-136. Zbl1107.92020
  14. KIRSCHNER, D. e PANETTA, J.C., Modeling immunotherapy of the tumor-immune interaction, J. Mathematical Biology, 37 (1998), 235-252. Zbl0902.92012
  15. NANI, F. e FREEDMAN, H.I., A mathematical model of cancer treatment by immunotherapy, Mathematical Biosciences, 163 (2000), 159-199. Zbl0997.92024
  16. D'ONOFRIO, A., Tumor-immune system interaction and immunotherapy: Modelling the tumor-stimulated proliferation of effectors, Mathematical Models and Methods in Applied Sciences, 16 (2006). 
  17. GYLLENBERG, M. e WEBB, G., A nonlinear structured population model of tumour growth with quiescence, J. Mathematical Biology, 28 (1990), 671-684. Zbl0744.92026
  18. KHEIFETZ, Y., KOGAN, Y. e AGUR, Z., Long-range predicability in midels of cell populations subjected to phase-specific drugs: Growth-rate approximation using properties of positive compact operators, Mathematical Models and Methods in Applied Sciences, 16 (2006). Zbl1094.92022
  19. MICHEL, P., Existence of solution of the cell division eigenproblem, Mathematical Models and Methods in Applied Sciences, 16 (2006). Zbl1094.92023
  20. BELLOUQUID, A. e DELITALA, M., Kinetic (cellular) models of cell progression and competition with the immune system, Z. Agnewande Mathematical Physics, 55 (2004), 295-317. Zbl1047.92022
  21. DERBEL, L., Analysis of a new model for tumor-immune system competition including long time scale effects, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1657-1682. Zbl1057.92036
  22. KOLEV, M., KOZLOWSKA, E., e LACHOWICZ, M., Mathematical model of tumor invasion along linear or tubular structures, Mathematical Computer Modelling, 41 (2005), 1083-1096. Zbl1085.92019
  23. BELLOMO, N., BELLOUQUID, A. e DELITALA, M., Mathematical topics on the modelling of multicellular systems in the competition between tumor and immune cells, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1683-1733. Zbl1060.92029
  24. BELLOUQUID, A. e DELITALA, M., Mathematical methods and tools of kinetic theory towards modelling complex biological systems, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1639-1666. Zbl1093.82016
  25. BELLOMO, N. e FORNI, G., Looking for new paradigms towards a biological-mathematical theory of complex multicellular systems, Mathematical Models and Methods in Applied Sciences, 16 (2006). Zbl1093.92002
  26. GREENSPAN, H.P., Models for the growth of a solid tumour by diffusion, J. Theoretical Biology, 52 (1972), 317-340. Zbl0257.92001
  27. ADAM, J. e NOREN, R., Equilibrium model of a vascularized spherical carcinoma with central necrosis, J. Mathematical Biology, 31 (1993), 735-745. Zbl0777.92007
  28. CHAPLAIN, M.A.J., From mutation to metastasis: The mathematical modelling of the stages of tumor development, in J. Adam and N. Bellomo, Eds., A Survey of Models on Tumor Immune Systems Dynamics (Birkhäuser, Boston, 1997), 187-236. 
  29. CHAPLAIN, M.A.J. e LOLAS, G., Spatio-temporal heterogeneity arising in a mathematical model of cancer invasion of tissue, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1735-1734. 
  30. BYRNE, H., A weakly nonlinear analysis of a model of avascular solid tumour growth, J. Mathematical Biology, 33 (1999), 59-89. Zbl0981.92011
  31. DE ANGELIS, E. e PREZIOSI, L., Advection diffusion models for solid tumours in vivo and related free-boundary problems, Mathematical Models and Methods in Applied Sciences, 10 (2000), 379-408. Zbl1008.92017
  32. FOLKMAN, J., Role of angiogenesis in tumor growth and methastasis, Seminars in Oncology, 29 (2002), 15-18. 
  33. BRU, A., PASTOR, J.M., FERNAUD, I., BRU, I., MELLE, S. e BERENGUER, C., Super-rough dynamics on tumor growth, Physical Review Letters, 81 (1998), 4008-4011. 
  34. AMBROSI, D. e PREZIOSI, L., On the closure of mass balance models for tumour growth, Mathematical Models and Methods in Applied Sciences, 12 (2002), 737-754. Zbl1016.92016
  35. BERTUZZI, A., FASANO, A. e GANDOLFI, A., A mathematical model for tumor cords incorporating the flow of interstitial fluids, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1735-1778. Zbl1094.92036
  36. OTHMER, H.G. e HILLEN, T., The diffusion limit of transport equations II: chemotaxis equations, SIAM J. Applied Mathematics, 62 (2002), 1222-1250. Zbl1103.35098
  37. CHALUB, F., DOLAK-STRUSS, Y., MARKOWICH, P., OELTZ, D., SCHMEISER, C. e SOREF, A., Model hierarchies for cell aggregation by chemotaxis, Mathematical Models and Methods in Applied Sciences, 16 (2006). Zbl1094.92009
  38. STEVENS, A., The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particles systems, SIAM J. Applied Mathematics, 61 (2002), 183-212. Zbl0963.60093
  39. LACHOWICZ, M., Micro and meso scales of description corresponding to a model of tissue invasion by solid tumors, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1667-1684. Zbl1078.92036
  40. BELLOMO, N. e BELLOUQUID, A., On the onset of nonlinearity for diffusion models of binary mixtures of biological materials by asymptotic analysis, International J. Nonlinear Mechanics, 41 (2006), 281-293. Zbl1160.76403
  41. BERTOTTI, M.L. e DELITALA, M., From discrete kinetic and stochastic game theory to modeling complex systems in applied sciences, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1061-1084. Zbl1083.92032
  42. BELLOUQUID, A. e DELITALA, M., Modelling Complex Biological Systems - A Kinetic Theory Approach (Birkhäuser, Boston, 2006). Zbl1178.92002
  43. MANTZARIS, N.V., WEBB, S. e OTHMER, H.G., Mathematical modeling of tumor-induced angiogenesis, J. Mathematical Biology, 47 (2004), 111-187. Zbl1109.92020
  44. BYRNE, H., ALARCON, T.A., MURPHY, J. e MAINI, P.K., Modelling the response of vascular tumours to chemotherapy: a multiscale approach, Mathematical Models and Methods in Applied Sciences, 16 (2006). Zbl1094.92038
  45. ADEREM, A. e SMITH, K.D., A system approach to dissecting immunity and inflammation, Seminars in Immunology, 16 (2004), 55-67. 
  46. FRIEDMAN, A. e REITICH, F., Analysis of a mathematical model of tumor growth, J. Mathematical Biology, 47 (1999), 391-423. Zbl0944.92018
  47. FRIEDMAN, A. e LOLAS, G., Analysis of a mathematical model of tumor lymphangiogenesis, Mathematical Models and Methods in Applied Sciences, 15 (2005), 95-107. Zbl1060.92036
  48. GILLET, É.À chaque cancer son scénario aléatoire, La Récherche, 390 (2005), 73. 
  49. WOESE, C.R., A new biology for a new century, Microbiology and Molecular Biology Reviews, 68 (2004), 173-186. 
  50. GATENBY, R.A. e MAINI, P.K., Mathematical oncology: Cancer summed up, Nature, 421 (2003), 321-323. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.