Nuova Frontiera della Ricerca Matematica nelle Scienze Mediche e Biologiche Immunologia e Oncologia Matematica
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-A, Issue: 3-1, page 415-448
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBellomo, Nicola. " Nuova Frontiera della Ricerca Matematica nelle Scienze Mediche e Biologiche Immunologia e Oncologia Matematica." Bollettino dell'Unione Matematica Italiana 9-A.3-1 (2006): 415-448. <http://eudml.org/doc/289585>.
@article{Bellomo2006,
abstract = {Questo lavoro propone una analisi critica sulle applicazioni della matematica allo studio di sistemi biologici complessi con particolare attenzione ai fenomeni della crescita tumorale in competizione con il sistema immunitario. Il lavoro delinea, a seguito di una descrizione fenomenologica, il problema matematico della modellizzazione multiscala e pone in evidenza come l'applicazione dei modelli allo studio di fenomeni di interesse nelle scienze biologiche generino problemi analitici e computazionali di notevole interesse e complessità. L'ultima parte del lavoro tratta alcune questioni relative alla formazione di matematici nel contesto nazionale ed europeo sempre con riferimento al tema trattato.},
author = {Bellomo, Nicola},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3-1},
pages = {415-448},
publisher = {Unione Matematica Italiana},
title = { Nuova Frontiera della Ricerca Matematica nelle Scienze Mediche e Biologiche Immunologia e Oncologia Matematica},
url = {http://eudml.org/doc/289585},
volume = {9-A},
year = {2006},
}
TY - JOUR
AU - Bellomo, Nicola
TI - Nuova Frontiera della Ricerca Matematica nelle Scienze Mediche e Biologiche Immunologia e Oncologia Matematica
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/12//
PB - Unione Matematica Italiana
VL - 9-A
IS - 3-1
SP - 415
EP - 448
AB - Questo lavoro propone una analisi critica sulle applicazioni della matematica allo studio di sistemi biologici complessi con particolare attenzione ai fenomeni della crescita tumorale in competizione con il sistema immunitario. Il lavoro delinea, a seguito di una descrizione fenomenologica, il problema matematico della modellizzazione multiscala e pone in evidenza come l'applicazione dei modelli allo studio di fenomeni di interesse nelle scienze biologiche generino problemi analitici e computazionali di notevole interesse e complessità. L'ultima parte del lavoro tratta alcune questioni relative alla formazione di matematici nel contesto nazionale ed europeo sempre con riferimento al tema trattato.
LA - ita
UR - http://eudml.org/doc/289585
ER -
References
top- MAY, R.M., Uses and abuses of mathematics in biology, Science, 303 (2004), 790-793.
- HARTWELL, H.L., HOPFIELD, J.J., LEIBNER, S. e MURRAY, A.W., From molecular to modular cell biology, Nature, 402 (1999), c47-c52.
- REED, R., Why is mathematical biology so hard?, Notices of the American Mathematical Society, 51 (2004), 338-342. Zbl1168.92303
- VICSEK, T., A question of scale, Nature, 418 (2004), 131.
- GATENBY, R.A., VINCENT, T.L. e GILLIES, R.J., Evolutionary dynamics in carcinogenesis, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1619-1638. Zbl1077.92031
- NOVAK, M.A. e SIGMUND, K., Evolutionary dynamics of biological games, Science, 303 (2004), 793-799.
- BELLOMO, N. e FORNI, G., Dynamics of tumor interaction with the host immune system, Mathematical Computer Modelling, 20 (1994), 107-122. Zbl0811.92014
- GRELLER, L., TOBIN, F. e POSTE, G., Tumor Heterogeneity and progression: conceptual foundation for modeling, Invasion and Metastasis, 16 (1996), 177-208.
- ADAM J. e BELLOMO N., Eds., A Survey of Models on Tumor Immune Systems Dynamics, Birkhäuser, Boston, (1997).
- PREZIOSI L., Ed., Modeling Cancer Growth, CRC-Press - Chapman Hall, Boca Raton, (2003). Zbl1039.92022
- CHAPLAIN M.A.J., Ed., Special Issue on Mathematical Modelling and Simulation of Aspects of Cancer Growth, Journal of Theoretical Medicine, 1 (2002), 1-93.
- BELLOMO, N. e MAINI, P.K., Preface and Special issue on Multiscale Cancer Modelling - A New Frontier in Applied Mathematics, Mathematical Models and Methods in Applied Sciences, 15 (2005), iii-viii.
- BELLOMO, N., DE ANGELIS, E. e PREZIOSI, L., Multiscale modeling and mathematical problems related to tumor evolution and medical therapy, Journal of Theoretical Medicine, 5 (2003), 111-136. Zbl1107.92020
- KIRSCHNER, D. e PANETTA, J.C., Modeling immunotherapy of the tumor-immune interaction, J. Mathematical Biology, 37 (1998), 235-252. Zbl0902.92012
- NANI, F. e FREEDMAN, H.I., A mathematical model of cancer treatment by immunotherapy, Mathematical Biosciences, 163 (2000), 159-199. Zbl0997.92024
- D'ONOFRIO, A., Tumor-immune system interaction and immunotherapy: Modelling the tumor-stimulated proliferation of effectors, Mathematical Models and Methods in Applied Sciences, 16 (2006).
- GYLLENBERG, M. e WEBB, G., A nonlinear structured population model of tumour growth with quiescence, J. Mathematical Biology, 28 (1990), 671-684. Zbl0744.92026
- KHEIFETZ, Y., KOGAN, Y. e AGUR, Z., Long-range predicability in midels of cell populations subjected to phase-specific drugs: Growth-rate approximation using properties of positive compact operators, Mathematical Models and Methods in Applied Sciences, 16 (2006). Zbl1094.92022
- MICHEL, P., Existence of solution of the cell division eigenproblem, Mathematical Models and Methods in Applied Sciences, 16 (2006). Zbl1094.92023
- BELLOUQUID, A. e DELITALA, M., Kinetic (cellular) models of cell progression and competition with the immune system, Z. Agnewande Mathematical Physics, 55 (2004), 295-317. Zbl1047.92022
- DERBEL, L., Analysis of a new model for tumor-immune system competition including long time scale effects, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1657-1682. Zbl1057.92036
- KOLEV, M., KOZLOWSKA, E., e LACHOWICZ, M., Mathematical model of tumor invasion along linear or tubular structures, Mathematical Computer Modelling, 41 (2005), 1083-1096. Zbl1085.92019
- BELLOMO, N., BELLOUQUID, A. e DELITALA, M., Mathematical topics on the modelling of multicellular systems in the competition between tumor and immune cells, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1683-1733. Zbl1060.92029
- BELLOUQUID, A. e DELITALA, M., Mathematical methods and tools of kinetic theory towards modelling complex biological systems, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1639-1666. Zbl1093.82016
- BELLOMO, N. e FORNI, G., Looking for new paradigms towards a biological-mathematical theory of complex multicellular systems, Mathematical Models and Methods in Applied Sciences, 16 (2006). Zbl1093.92002
- GREENSPAN, H.P., Models for the growth of a solid tumour by diffusion, J. Theoretical Biology, 52 (1972), 317-340. Zbl0257.92001
- ADAM, J. e NOREN, R., Equilibrium model of a vascularized spherical carcinoma with central necrosis, J. Mathematical Biology, 31 (1993), 735-745. Zbl0777.92007
- CHAPLAIN, M.A.J., From mutation to metastasis: The mathematical modelling of the stages of tumor development, in J. Adam and N. Bellomo, Eds., A Survey of Models on Tumor Immune Systems Dynamics (Birkhäuser, Boston, 1997), 187-236.
- CHAPLAIN, M.A.J. e LOLAS, G., Spatio-temporal heterogeneity arising in a mathematical model of cancer invasion of tissue, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1735-1734.
- BYRNE, H., A weakly nonlinear analysis of a model of avascular solid tumour growth, J. Mathematical Biology, 33 (1999), 59-89. Zbl0981.92011
- DE ANGELIS, E. e PREZIOSI, L., Advection diffusion models for solid tumours in vivo and related free-boundary problems, Mathematical Models and Methods in Applied Sciences, 10 (2000), 379-408. Zbl1008.92017
- FOLKMAN, J., Role of angiogenesis in tumor growth and methastasis, Seminars in Oncology, 29 (2002), 15-18.
- BRU, A., PASTOR, J.M., FERNAUD, I., BRU, I., MELLE, S. e BERENGUER, C., Super-rough dynamics on tumor growth, Physical Review Letters, 81 (1998), 4008-4011.
- AMBROSI, D. e PREZIOSI, L., On the closure of mass balance models for tumour growth, Mathematical Models and Methods in Applied Sciences, 12 (2002), 737-754. Zbl1016.92016
- BERTUZZI, A., FASANO, A. e GANDOLFI, A., A mathematical model for tumor cords incorporating the flow of interstitial fluids, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1735-1778. Zbl1094.92036
- OTHMER, H.G. e HILLEN, T., The diffusion limit of transport equations II: chemotaxis equations, SIAM J. Applied Mathematics, 62 (2002), 1222-1250. Zbl1103.35098
- CHALUB, F., DOLAK-STRUSS, Y., MARKOWICH, P., OELTZ, D., SCHMEISER, C. e SOREF, A., Model hierarchies for cell aggregation by chemotaxis, Mathematical Models and Methods in Applied Sciences, 16 (2006). Zbl1094.92009
- STEVENS, A., The derivation of chemotaxis equations as limit dynamics of moderately interacting stochastic many-particles systems, SIAM J. Applied Mathematics, 61 (2002), 183-212. Zbl0963.60093
- LACHOWICZ, M., Micro and meso scales of description corresponding to a model of tissue invasion by solid tumors, Mathematical Models and Methods in Applied Sciences, 15 (2005), 1667-1684. Zbl1078.92036
- BELLOMO, N. e BELLOUQUID, A., On the onset of nonlinearity for diffusion models of binary mixtures of biological materials by asymptotic analysis, International J. Nonlinear Mechanics, 41 (2006), 281-293. Zbl1160.76403
- BERTOTTI, M.L. e DELITALA, M., From discrete kinetic and stochastic game theory to modeling complex systems in applied sciences, Mathematical Models and Methods in Applied Sciences, 14 (2004), 1061-1084. Zbl1083.92032
- BELLOUQUID, A. e DELITALA, M., Modelling Complex Biological Systems - A Kinetic Theory Approach (Birkhäuser, Boston, 2006). Zbl1178.92002
- MANTZARIS, N.V., WEBB, S. e OTHMER, H.G., Mathematical modeling of tumor-induced angiogenesis, J. Mathematical Biology, 47 (2004), 111-187. Zbl1109.92020
- BYRNE, H., ALARCON, T.A., MURPHY, J. e MAINI, P.K., Modelling the response of vascular tumours to chemotherapy: a multiscale approach, Mathematical Models and Methods in Applied Sciences, 16 (2006). Zbl1094.92038
- ADEREM, A. e SMITH, K.D., A system approach to dissecting immunity and inflammation, Seminars in Immunology, 16 (2004), 55-67.
- FRIEDMAN, A. e REITICH, F., Analysis of a mathematical model of tumor growth, J. Mathematical Biology, 47 (1999), 391-423. Zbl0944.92018
- FRIEDMAN, A. e LOLAS, G., Analysis of a mathematical model of tumor lymphangiogenesis, Mathematical Models and Methods in Applied Sciences, 15 (2005), 95-107. Zbl1060.92036
- GILLET, É.À chaque cancer son scénario aléatoire, La Récherche, 390 (2005), 73.
- WOESE, C.R., A new biology for a new century, Microbiology and Molecular Biology Reviews, 68 (2004), 173-186.
- GATENBY, R.A. e MAINI, P.K., Mathematical oncology: Cancer summed up, Nature, 421 (2003), 321-323.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.