Existence of solutions for a second order problem on the half-line via Ekeland's variational principle

D. Bouafia; T. Moussaoui; D. O’Regan

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (2016)

  • Volume: 36, Issue: 2, page 131-140
  • ISSN: 1509-9407

Abstract

top
In this paper we study the existence of nontrivial solutions for a nonlinear boundary value problem posed on the half-line. Our approach is based on Ekeland’s variational principle.

How to cite

top

D. Bouafia, T. Moussaoui, and D. O’Regan. "Existence of solutions for a second order problem on the half-line via Ekeland's variational principle." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 36.2 (2016): 131-140. <http://eudml.org/doc/289594>.

@article{D2016,
abstract = {In this paper we study the existence of nontrivial solutions for a nonlinear boundary value problem posed on the half-line. Our approach is based on Ekeland’s variational principle.},
author = {D. Bouafia, T. Moussaoui, D. O’Regan},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {Ekeland’s variational principle; critical point},
language = {eng},
number = {2},
pages = {131-140},
title = {Existence of solutions for a second order problem on the half-line via Ekeland's variational principle},
url = {http://eudml.org/doc/289594},
volume = {36},
year = {2016},
}

TY - JOUR
AU - D. Bouafia
AU - T. Moussaoui
AU - D. O’Regan
TI - Existence of solutions for a second order problem on the half-line via Ekeland's variational principle
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 2016
VL - 36
IS - 2
SP - 131
EP - 140
AB - In this paper we study the existence of nontrivial solutions for a nonlinear boundary value problem posed on the half-line. Our approach is based on Ekeland’s variational principle.
LA - eng
KW - Ekeland’s variational principle; critical point
UR - http://eudml.org/doc/289594
ER -

References

top
  1. [1] M. Badiale and E. Serra, Semilinear Elliptic Equations for Beginners (Universitext, Springer, London, 2011) x+199 pp. 
  2. [2] H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, 2010). doi: 10.1007/978-0-387-70914-7 
  3. [3] H. Chen, Z. He and J. Li, Multiplicity of solutions for impulsive differential equation on the half-line via variational methods, Bound. Value Probl. 14 (2016). doi: 10.1186/s13661-016-0524-8 
  4. [4] B. Dai and D. Zhang, The Existence and multiplicity of solutions for second-order impulsive differential equations on the half-line, Results. Math. 63 (2013), 135-149. doi: 10.1007/s00025-011-0178-x 
  5. [5] S. Djebali and T. Moussaoui, A class of second order BVPs on infinite intervals, Electron. J. Qual. Theory Differ. Equ. (4) (2006), 1-19. doi: 10.14232/ejqtde.2006.1.4 
  6. [6] S. Djebali, O. Saifi and S. Zahar, Singular boundary value problems with variable coefficients on the positive half-line, Electron. J. Differential Equations 2013 (73) (2013), 1-18. 
  7. [7] S. Djebali, O. Saifi and S. Zahar, Upper and lower solutions for BVPs on the half-line with variable coefficient and derivative depending nonlinearity, Electron. J. Qual. Theory Differ. Equ. (14) (2011), 1-18. doi: 10.14232/ejqtde.2011.1.14 
  8. [8] S. Djebali and S. Zahar, Bounded solutios for a derivative dependent boundary value problem on the half-line, Dynam. Systems Appl. 19 (2010), 545-556. 
  9. [9] I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353. doi: 10.1016/0022-247X(74)90025-0 
  10. [10] O. Frites, T. Moussaoui and D. O'Regan, Existence of solutions via variational methods for a problem with nonlinear boundary conditions on the half-line, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 22 (2015), 395-407. 
  11. [11] H. Lian and W. Ge, Solvability for second-order three-point boundary value problems on a half-line, Appl. Math. Lett. 19 (2006), 1000-1006. doi: 10.1016/j.aml.2005.10.018 
  12. [12] D. O'Regan, B. Yan and R.P. Agarwal, Nonlinear boundary value problems on semi-infinite intervals using weighted spaces: An upper and lower solution approach, Positivity 11 (2007), 171-189. doi: 10.1007/s11117-006-0050-5 
  13. [13] N.S. Papageorgiou and S.K. Yiallourou, Handbook of Applied Analysis (Springer, New-York, 2009). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.