Cauchy problem in multi-anisotropic Gevrey classes for weakly hyperbolic operators
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-B, Issue: 1, page 21-50
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCalvo, Daniela. "Cauchy problem in multi-anisotropic Gevrey classes for weakly hyperbolic operators." Bollettino dell'Unione Matematica Italiana 9-B.1 (2006): 21-50. <http://eudml.org/doc/289602>.
@article{Calvo2006,
abstract = { We prove the well-posedness of the Cauchy Problem for first order weakly hyperbolic systems in the multi-anisotropic Gevrey classes, that generalize the standard Gevrey spaces. The result is obtained under the following hypotheses: the principal part is weakly hyperbolic with constant coefficients, the lower order terms satisfy some Levi-type conditions; and lastly the coefficients of the lower order terms belong to a suitable anisotropic Gevrey class. In the proof it is used the quasi-symmetrization of Sylvster-type systems, adapted to the case of the multi-anisotropic Gevrey classes and taking into account the lower order terms.},
author = {Calvo, Daniela},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {21-50},
publisher = {Unione Matematica Italiana},
title = {Cauchy problem in multi-anisotropic Gevrey classes for weakly hyperbolic operators},
url = {http://eudml.org/doc/289602},
volume = {9-B},
year = {2006},
}
TY - JOUR
AU - Calvo, Daniela
TI - Cauchy problem in multi-anisotropic Gevrey classes for weakly hyperbolic operators
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/2//
PB - Unione Matematica Italiana
VL - 9-B
IS - 1
SP - 21
EP - 50
AB - We prove the well-posedness of the Cauchy Problem for first order weakly hyperbolic systems in the multi-anisotropic Gevrey classes, that generalize the standard Gevrey spaces. The result is obtained under the following hypotheses: the principal part is weakly hyperbolic with constant coefficients, the lower order terms satisfy some Levi-type conditions; and lastly the coefficients of the lower order terms belong to a suitable anisotropic Gevrey class. In the proof it is used the quasi-symmetrization of Sylvster-type systems, adapted to the case of the multi-anisotropic Gevrey classes and taking into account the lower order terms.
LA - eng
UR - http://eudml.org/doc/289602
ER -
References
top- BOGGIATTO, P. - BUZANO, E. - RODINO, L., Global hypoellipticity and spectral theory,Akademie Verlag, Berlin, 1996. Zbl0878.35001MR1435282
- BRONSTEIN, M. D., The Cauchy problem for hyperbolic operators with characteristics of variable multiplicity, Trudy Moscow Math. Soc., 41 (1980), 87-103. MR611140
- CALVO, D., Generalized Gevrey classes and multi-quasi-hyperbolic operators, Rend. Sem. Mat. Univ. Pol. Torino, 6, N. 2 (2002), 73-100. Zbl1177.35050MR1980363
- CALVO, D., Cauchy problem in generalized Gevrey classes, Evolution Equations, Propagation Phenomena - Global Existence - Influence of Non-Linearities, Eds. R. Picard, M. Reissig, W. Zajaczkowski, Warszawa2003, Banach Center Publications, Vol. 60, 269-278. Zbl1024.35063MR1993054
- CALVO, D., Cauchy problem in inhomogeneous Gevrey classes, Progress in Analysis, Proceeding of the 3rd International ISAAC Congress, Vol. II, Eds. G. W. Bgehr, R. B. Gilber, M. W. Wong, World Scientific (Singapore, 2003), 1015-1033. Zbl1060.35077MR2032781
- CATTABRIGA, L., Alcuni problemi per equazioni differenziali lineari con coefficienti costanti, Quad. Un. Mat. It., 24, Pitagora 1983, Bologna.
- COLOMBINI, F. - SPAGNOLO, S., An example of weakly hyperbolic Cauchy problem not well-posed in C I , Acta Math., 148 (1982), 243-253. Zbl0517.35053MR666112DOI10.1007/BF02392730
- CORLI, A., Un Teorema di rappresentazione per certe classi generalizzate di Gevrey, Boll. Un. Mat. It. Serie VI, Vol. 4-C, N.1 (1985), 245-257. MR805217
- D'ANCONA, P. - SPAGNOLO, S., Quasi-symmetrization of hyperbolic systems and propagation of the analytic regularity, Boll. Un. Mat. It., 1-B (1998), 165-185. MR1618976
- FRIBERG, J., Multi-quasielliptic polynomials, Ann. Sc. Norm. Sup. Pisa, Cl. di Sc., 21 (1967), 239-260. MR221090
- GARELLO, G., Generalized Sobolev algebras and regularity for solutions of multiquasi-elliptic semilinear equations, Comm. Appl. Anal., 3, N. 4 (1999), 563-574. Zbl0933.35204MR1706710
- GARELLO, G., Pseudodifferential operators with symbols in weighted Sobolev spaces and regularity for non linear partial differential equations, Math. Nachr., 239-240 (2002), 62-79. Zbl1027.35170MR1905664DOI10.1002/1522-2616(200206)239:1<62::AID-MANA62>3.0.CO;2-W
- GINDIKIN, G. - VOLEVICH, L. R., The method of Newton's polyhedron in the theory of partial differential equations, Mathematics and its applications, Soviet Series, 86 (1992). Zbl0779.35001MR1256484DOI10.1007/978-94-011-1802-6
- HAKOBYAN, G. H. - MARKARYAN, V. N., On Gevrey type solutions of hypoelliptic equations, Journal of Contemporary Math. Anal. (Armenian Akad. of Sciences), 31, N. 2 (1996), 33-47. MR1683925
- HAKOBYAN, G. H. - MARKARYAN, V. N., Gevrey class solutions of hypoellipticequations, IZV. Nat. Acad. Nauk Arm., Math., 33, N. 1 (1998), 35-47. MR1714534
- HORMANDER, L., The analysis of linear partial differential operators, I, II, III, IV, Springer-Verlag, Berlin, 1983-1985. MR705278DOI10.1007/978-3-642-96750-4
- JANNELLI, E., Sharp quasi-symmetrizer for hyperbolic Sylvester matrices, Communication in the «Workshop on Hyperbolic PDE», Venezia 11-12 April 2002, to appear.
- JANNELLI, E., On the symmetrization of the principal symbol of hyperbolic equations, Comm. Partial Differential Equations, 14 (1989), 1617-1634. MR1039912DOI10.1080/03605308908820670
- KAJITANI, K., Local solution of the Cauchy problem for nonlinear hyperbolic systems in Gevrey classes, Hokkaido Math. J., 12 (1983), 434-460. MR725589DOI10.14492/hokmj/1525852966
- LARSSON, E., Generalized hyperbolicity, Ark. Mat., 7 (1967), 11-32. MR221062DOI10.1007/BF02591674
- LERAY, J., Équations hyperboliques non-strictes: contre-exemples, du type De Giorgi, aux théorèmes d'existence et d'unicité, Math. Ann., 162 (1966), pp. 228-236. Zbl0135.15001MR217418DOI10.1007/BF01360912
- LERAY, J. - OHYA, Y., Équations et systemes non-lineaires, hyperboliques non-stricts, Math. Ann., 70 (1967), 167-205. Zbl0146.33701MR208136DOI10.1007/BF01350150
- LIESS, O. - RODINO, L., Inhomogeneous Gevrey classes and related pseudodifferential operators, Anal. Funz. Appl. Boll. Un. Mat. It., 3-C, N. 1 (1984), 233-323. Zbl0557.35131MR749292
- MIZOHATA, S., The theory of partial differential equations, Universiy Press, Cambridge, 1973. Zbl0263.35001MR599580
- RODINO, L., Linear partial differential operators in Gevrey spaces, World Scientific Publishing Co., Singapore, 1993. Zbl0869.35005MR1249275DOI10.1142/9789814360036
- STEINBERG, S., Existence and uniqueness of solutions of hyperbolic equations which are not necessarily strictly hyperbolic, J. Differential Equations, 17 (1975), 119-153. Zbl0287.35065MR355359DOI10.1016/0022-0396(75)90038-8
- ZANGHIRATI, L., Iterati di una classe di operatori ipoellittici e classi generalizzate di Gevrey, Suppl. Boll. Un. Mat. It., 1 (1980), 177-195. MR629415
- ZANGHIRATI, L., Iterati di operatori e regolarita Gevrey microlocale anisotropa, Rend. Sem. Mat. Univ. Padova, 67 (1982), 85-104. MR682703
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.