# Exponentially stable manifolds in the neighbourhood of elliptic equilibria

Antonio Giorgilli; Daniele Muraro

Bollettino dell'Unione Matematica Italiana (2006)

- Volume: 9-B, Issue: 1, page 1-20
- ISSN: 0392-4041

## Access Full Article

top## Abstract

top## How to cite

topGiorgilli, Antonio, and Muraro, Daniele. "Exponentially stable manifolds in the neighbourhood of elliptic equilibria." Bollettino dell'Unione Matematica Italiana 9-B.1 (2006): 1-20. <http://eudml.org/doc/289603>.

@article{Giorgilli2006,

abstract = {We consider a Hamiltonian system in a neighbourhood of an elliptic equilibrium which is a minimum for the Hamiltonian. With appropriate non-resonance conditions we prove that in the neighbourhood of the equilibrium there exist low dimensional manifolds that are exponentially stable in Nekhoroshev’s sense. This generalizes the theorem of Lyapounov on the existence of periodic orbits. The result may be meaningful for, e.g., the dynamics of non-linear chains of the Fermi-Pasta-Ulam (FPU) type.},

author = {Giorgilli, Antonio, Muraro, Daniele},

journal = {Bollettino dell'Unione Matematica Italiana},

language = {eng},

month = {2},

number = {1},

pages = {1-20},

publisher = {Unione Matematica Italiana},

title = {Exponentially stable manifolds in the neighbourhood of elliptic equilibria},

url = {http://eudml.org/doc/289603},

volume = {9-B},

year = {2006},

}

TY - JOUR

AU - Giorgilli, Antonio

AU - Muraro, Daniele

TI - Exponentially stable manifolds in the neighbourhood of elliptic equilibria

JO - Bollettino dell'Unione Matematica Italiana

DA - 2006/2//

PB - Unione Matematica Italiana

VL - 9-B

IS - 1

SP - 1

EP - 20

AB - We consider a Hamiltonian system in a neighbourhood of an elliptic equilibrium which is a minimum for the Hamiltonian. With appropriate non-resonance conditions we prove that in the neighbourhood of the equilibrium there exist low dimensional manifolds that are exponentially stable in Nekhoroshev’s sense. This generalizes the theorem of Lyapounov on the existence of periodic orbits. The result may be meaningful for, e.g., the dynamics of non-linear chains of the Fermi-Pasta-Ulam (FPU) type.

LA - eng

UR - http://eudml.org/doc/289603

ER -

## References

top- BERCHIALLA, L. - GALGANI, L. - GIORGILLI, A., Localization of energy in FPU chains, DCDS-B, to appear. Zbl1136.37353MR2112707DOI10.3934/dcds.2004.11.855
- BOCCHIERI, P. - SCOTTI, A. - BEARZI, B. - LOINGER, A., Anharmonic chain with Lennard-Jones interaction, Phys. Rew. A, 2 (1970), 2013-2019.
- CAROTTA, M. C. - FERRARIO, C. - LO VECCHIO, G. - CARAZZA, B. - GALGANI, L., New phenomenon in the stochastic transition of coupled oscillators, Phys. Rev. A, 17 (1978), 786.
- CASETTI, L. CERRUTI-SOLA, M. - PETTINI, M. - COHEN, E. G. D., The Fermi-Pasta-Ulam problem revisited: Stochasticity thresholds in nonlinear Hamiltonian systems, Phys. Rev. E, 55 (1997), 6566-6574. MR1453804DOI10.1103/PhysRevE.55.6566
- CHERRY, T. M., On the solutions of Hamiltonian systems in the neighbourhood of asingular point, Proc. London Math. Soc., Ser. 2, 27 (1926), 151-170. MR1575385DOI10.1112/plms/s2-27.1.151
- IZRAILEV, F. M. - CHIRIKOV, B. V., Stochasticity of the simplest dynamical model with divided phase space, Dokl. Akad. Nauk. SSSR, 166 (1966), 57; Sov. Phys. Dokl., 11 (1966), 30.
- DE LUCA, J. - LICHTENBERG, A. J. - RUFFO, S., Finite time to equipartition in the thermodynamic limit, Phys. Rev. E, 60 (1999), 3781-3786.
- FERMI, E. - PASTA, J. - ULAM, S., Studies of nonlinear problems, Los Alamos document LA-1940 (1955). Zbl0353.70028
- GALGANI, L. - GIORGILLI, A. - MARTINOLI, A. - VANZINI, S., On the problem of energy equipartition for large systems of the Fermi-Pasta-Ulam type: analytical and numerical estimates, Physica D, 59 (1992), 334-348. Zbl0775.70023MR1192748DOI10.1016/0167-2789(92)90074-W
- GIORGILLI, A., Unstable equilibria of Hamiltonian systems, Disc. and Cont. Dynamical Systems, Vol. 7, N. 4 (2001), 855-871. Zbl1016.37031MR1849665DOI10.3934/dcds.2001.7.855
- KANTZ, H. - LIVI, R. - RUFFO, S., Equipartition thresholds in chains of anharmonic oscillators, J. Stat. Phys., 76 (1994), 627-643.
- LIVI, R. - PETTINI, M. - RUFFO, S. - SPARPAGLIONE, M. - VULPIANI, A., Relaxation to different stationary states in the Fermi-Pasta-Ulam model, Phys. Rev. A, 28 (1983), 3544-3552.
- LIVI, R. - PETTINI, M. - RUFFO, S. - SPARPAGLIONE, M. - VULPIANI, A., Equipartition threshold in nonlinear large Hamiltonian systems: the Fermi-Pasta-Ulam model, Phys. Rev. A, 31 (1985), 1039-1045.
- MOSER, J., On the generalization of a theorem of A. Liapounoff, Comm. Pure Appl. Math., 11 (1958), 257-271. Zbl0082.08003MR96021DOI10.1002/cpa.3160110208
- PETTINI, M. - LANDOLFI, M., Relaxation properties and ergodicity breaking in nonlinear Hamiltonian dynamics, Phys. Rev. A, 41 (1990), 768-783. MR1036970DOI10.1103/PhysRevA.41.768

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.