# Distributional {D}unkl transform and {D}unkl convolution operators

Bollettino dell'Unione Matematica Italiana (2006)

- Volume: 9-B, Issue: 1, page 221-245
- ISSN: 0392-4033

## Access Full Article

top## Abstract

top## How to cite

topBetancor, Jorge J.. "Distributional {D}unkl transform and {D}unkl convolution operators." Bollettino dell'Unione Matematica Italiana 9-B.1 (2006): 221-245. <http://eudml.org/doc/289605>.

@article{Betancor2006,

abstract = {In this paper, that is divided in two parts, we study the distributional Dunkl transform on R. In the first part we investigate the Dunkl transform and the Dunkl convolution operators on tempered distributions. We prove that the tempered distributions defining Dunkl convolution operators on the Schwartz space are the elements of \(\mathcal\{O\}'\_c\), the space of usual convolution operators on \(S\). In the second part we define the distributional Dunkl transform by employing the kernel method. We introduce Frechet function spaces containing the kernel of the Dunkl transform. In theproof of the properties of the distributional Dunkl transform, defined on the correspoding dual spaces, certain representations of the elements of the dual spaces will play an important role. These representations allows us to simplify, in contrast with the previous and usual methods (see, for instance [7] and [13]), the mentioned proofs. Our new procedure also applies to other distributional integral transforms that had been investigated by other authors (Hankel transforms ([7] and [13]), amongst others).},

author = {Betancor, Jorge J.},

journal = {Bollettino dell'Unione Matematica Italiana},

language = {eng},

month = {2},

number = {1},

pages = {221-245},

publisher = {Unione Matematica Italiana},

title = {Distributional \{D\}unkl transform and \{D\}unkl convolution operators},

url = {http://eudml.org/doc/289605},

volume = {9-B},

year = {2006},

}

TY - JOUR

AU - Betancor, Jorge J.

TI - Distributional {D}unkl transform and {D}unkl convolution operators

JO - Bollettino dell'Unione Matematica Italiana

DA - 2006/2//

PB - Unione Matematica Italiana

VL - 9-B

IS - 1

SP - 221

EP - 245

AB - In this paper, that is divided in two parts, we study the distributional Dunkl transform on R. In the first part we investigate the Dunkl transform and the Dunkl convolution operators on tempered distributions. We prove that the tempered distributions defining Dunkl convolution operators on the Schwartz space are the elements of \(\mathcal{O}'_c\), the space of usual convolution operators on \(S\). In the second part we define the distributional Dunkl transform by employing the kernel method. We introduce Frechet function spaces containing the kernel of the Dunkl transform. In theproof of the properties of the distributional Dunkl transform, defined on the correspoding dual spaces, certain representations of the elements of the dual spaces will play an important role. These representations allows us to simplify, in contrast with the previous and usual methods (see, for instance [7] and [13]), the mentioned proofs. Our new procedure also applies to other distributional integral transforms that had been investigated by other authors (Hankel transforms ([7] and [13]), amongst others).

LA - eng

UR - http://eudml.org/doc/289605

ER -

## References

top- BARRIOS, J.A. - BETANCOR, J.J., A Kratzel's integral transformation of distributions, Collect. Math., 42 (1) (1991), 11-32. Zbl0772.46019MR1181059
- BETANCOR, J.J., Characterizations of Hankel transformable generalized functions, Internat. J. Math. Math. Sci., 14 (2) (1991), 269-274. Zbl0745.46044MR1096866DOI10.1155/S0161171291000303
- BETANCOR, J.J. - MARRERO, I., The Hankel convolution and the Zemanian spaces ${B}_{\mu}$ and ${B}_{\mu}^{\prime}$, Math. Nachr., 160 (1993), 277-298. Zbl0796.46023MR1245003DOI10.1002/mana.3211600113
- DUNKL, C.F., Differential difference operators associated with reflection groups, Trans. Amer. Math. Soc., 311 (1989), 167-183. Zbl0652.33004MR951883DOI10.2307/2001022
- C CHETTAOUI, H. - TRIMÈCHE, K., New Paley-Wiener theorems for the Dunkl transform on $\mathbb{R}$, Integral Transforms Spec. Funct., 14 (2) (2003), 97-115. MR1969838DOI10.1080/10652460290029635
- DUBE, L.S., On finite Hankel transformation of generalized functions, Pacific J. Math., 62 (1976), 365-378. Zbl0329.46044MR410365
- DUBE, L.S. - PANDEY, J.N., On the Hankel transform of distributions, Tohoku Math J., 27 (1975), 337-354. Zbl0331.46032MR450964DOI10.2748/tmj/1203529246
- DUNKL, C.F., Hankel transforms associated to finite reflection groups, Contemp. Math., 138 (1992), 123-138. Zbl0789.33008MR1199124DOI10.1090/conm/138/1199124
- HORVATH, J., Topological vector spaces and distributions, Vol. 1, (Addison Wesley, 1966). Zbl0143.15101MR205028
- DE JEU, M.F.E., The Dunkl transform, Invent. Math., 113 (1993), 147-162. Zbl0789.33007MR1223227DOI10.1007/BF01244305
- JEWETT, R.I., Spaces with an abstract convolution of measures, Adv. Math., 18(1975), 1-101. Zbl0325.42017MR394034DOI10.1016/0001-8708(75)90002-X
- KINGMAN, J.F.C., Random walks with spherical symmetry, Acta Math., 109 (1965), 11-53. Zbl0121.12803MR149567DOI10.1007/BF02391808
- KOH, E.L. - ZEMANIAN, A.H., The complex Hankel and I-transformations of generalized functions, SIAM J. Appl. Math., 16 (5) (1968), 945-957. Zbl0167.41503MR201930DOI10.1137/0114049
- MARRERO, I. - BETANCOR, J.J., Hankel convolution of generalized functions, Rendiconti di Matematica, 15 (1995), 351-380. Zbl0833.46026MR1362778
- BEN MOHAMED, H. - Trimeche, K., Dunkl transforms on $\mathbb{R}$ and convolution product on new spaces of distributions, Integral Transforms Spec. Func.14 (5) (2003), 437-458. Zbl1057.46033MR2006001DOI10.1080/1065246031000081689
- ROESLER, M., Convolution algebras which are not necessarily probability preserving, In: Applications of hypergroups and related measure algebras (Summer research Conference, Seattle, 1993), Contemp. Math., 183 (1995). MR1334785DOI10.1090/conm/183/02068
- ROESLER, M., Bessel type signed hypergroups on $\mathbb{R}$, In: H Heyer, A. Mukherjea (Eds.), Proc. XI, Probability measures on groups and related structures, Oberwolfach, 1994, World Scientific, Singapore, 292-304. MR1414942
- SCHWARTZ, L., Theorie des distributions, Hermann, Paris, 1978. Zbl0399.46028MR209834
- SOLTANI, F., ${L}^{p}$-Fourier multipliers for the real Dunkl operator on the real line, J. Funct. Anal., 209 (1) (2004), 16-35. Zbl1045.43003MR2039216DOI10.1016/j.jfa.2003.11.009
- TREVES, F., Topological vector spaces, distributions and kernels, Academic Press, New York, 1967.New York, 1967. Zbl0171.10402
- WATSON, G.N., A treatise on the theory of Bessel functions, Cambridge University Press, 1966. Zbl0174.36202
- ZEMANIAN, A.H., A distributional K-transformation, SIAM J. Appl. Math., 14 (1966), 1350-1365.
- ZEMANIAN, A.H., Generalized integral transformations, Interscience publishers,New York, 1968.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.