Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-B, Issue: 3, page 545-566
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topHorbacz, Katarzyna. "Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations." Bollettino dell'Unione Matematica Italiana 9-B.3 (2006): 545-566. <http://eudml.org/doc/289608>.
@article{Horbacz2006,
abstract = {We consider the stochastic differential equation \begin\{equation\}\tag\{1\}dX(t) = a(X(t); \xi(t)) \, dt + \int\_\Theta b(X(t); \theta) \mathcal\{N\}\_p(dt; d\theta)\end\{equation\} for $t \geq 0$ with the initial condition $X(0) = x_\{0\}$. We give sufficient conditions for the asymptotic stability of the semigroup $\\{P^\{t\}\\}_\{t \geq 0\}$ generated by the stochastic differential equation (1).},
author = {Horbacz, Katarzyna},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {545-566},
publisher = {Unione Matematica Italiana},
title = {Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations},
url = {http://eudml.org/doc/289608},
volume = {9-B},
year = {2006},
}
TY - JOUR
AU - Horbacz, Katarzyna
TI - Asymptotic stability of a semigroup generated by randomly connected Poisson driven differential equations
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/10//
PB - Unione Matematica Italiana
VL - 9-B
IS - 3
SP - 545
EP - 566
AB - We consider the stochastic differential equation \begin{equation}\tag{1}dX(t) = a(X(t); \xi(t)) \, dt + \int_\Theta b(X(t); \theta) \mathcal{N}_p(dt; d\theta)\end{equation} for $t \geq 0$ with the initial condition $X(0) = x_{0}$. We give sufficient conditions for the asymptotic stability of the semigroup $\{P^{t}\}_{t \geq 0}$ generated by the stochastic differential equation (1).
LA - eng
UR - http://eudml.org/doc/289608
ER -
References
top- COSTA, O.L.V., Stationary distributions for piecewise-deterministic Markov processes, J. Appl. Prob., 27 (1990), 60-73. Zbl0703.60068
- DAVIS, M.H.A., Piecewise-deterministic Markov processes : A general class of nondiffusion stochastic models, J. R. Statist. Soc. B (1984, 46), 353-388. Zbl0565.60070
- DAVIS, M.H.A., Markov Models and Optimization, Chapman and Hall, London (1993). Zbl0780.60002
- DIEKMANN, O. - HEIJMANS, H.J.A.M. - THIEME, H.R., On the stability of the cell size distribution, J. Math. Biol., 19 (1984), 227-248. Zbl0543.92021
- FORTET, R. - MOURIER, B., Convergence de la répartition empirique vers la répartition théorétique, Ann. Sci. École. Norm. Sup., 70 (1953), 267-285. Zbl0053.09601
- FRISCH, U., Wave propagation in random media, Probabilistic Methods in Applied Mathematics ed. A.T. Bharucha - Reid, Academic Press1968.
- HORBACZ, K., Randomly connected dynamical systems - asymptotic stability, Ann. Polon. Math., 68.1 (1998), 31-50. Zbl0910.47003
- HORBACZ, K., Invariant measures related with randomly connected Poisson driven diferential equations, Ann. Polon. Math., 79.1 (2002), 31-44. Zbl1011.60036
- HORBACZ, K., Randomly connected differential equations with Poisson type perturbations, Nonlinear Studies, 9.1 (2002), 81-98.
- HORBACZ, K., Random dynamical systems with jumps, J. Appl. Prob., 41 (2004), 890-910. Zbl1091.47012
- HORBACZ, K., MYJAK, J. - SZAREK, T., Stability of random dynamical system on Banach spaces, (to appear). Zbl1121.37037
- KELLER, J.B., Stochastic equations and wave propagation in random media, Proc. Symp. Appl. Math., 16 (1964), 1456-1470.
- LASOTA, A. - MACKEY, M.C., Chaos, Fractals and Noise - Stochastic Aspect of Dynamics, Springer-VerlagNew York (1994).
- LASOTA, A. - TRAPLE, J., Invariant measures related with Poisson driven stochastic differential equation, Stoch. Proc. and Their Appl.106.1 (2003), 81-93. Zbl1075.60535
- LASOTA, A. - YORKE, J.A., Lower bound technique for Markov operators and iterated function systems, Random and Computational Dynamics, 2 (1994), 41-77. Zbl0804.47033
- MEYN, S. and TWEEDIE, R, Markov Chains and Stochastic Stability, Springer-VerlagBerlin1993.
- TRAPLE, J., Markov semigroup generated by Poisson driven differential equations, Bull. Pol. Ac. Math., 44 (1996), 161-182. Zbl0861.45008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.