Cohomology of Tango bundle on
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-B, Issue: 2, page 319-326
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topFaenzi, Daniele. "Cohomology of Tango bundle on $\mathbb{P}^5$." Bollettino dell'Unione Matematica Italiana 9-B.2 (2006): 319-326. <http://eudml.org/doc/289609>.
@article{Faenzi2006,
abstract = {The Tango bundle $T$ is defined as the pull-back of the Cayley bundle over a smooth quadric $Q_5$ in $\mathbb\{P\}_6$ via a map $f$ existing only in characteristic 2 and factorizing the Frobenius $\varphi$. The cohomology of $T$ is computed in terms of $S \otimes C$, $\varphi^*(C)$, $\text\{Sym\}^2(C)$ and $C$, which we handle with Borel-Bott-Weil theorem.},
author = {Faenzi, Daniele},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {319-326},
publisher = {Unione Matematica Italiana},
title = {Cohomology of Tango bundle on $\mathbb\{P\}^5$},
url = {http://eudml.org/doc/289609},
volume = {9-B},
year = {2006},
}
TY - JOUR
AU - Faenzi, Daniele
TI - Cohomology of Tango bundle on $\mathbb{P}^5$
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/6//
PB - Unione Matematica Italiana
VL - 9-B
IS - 2
SP - 319
EP - 326
AB - The Tango bundle $T$ is defined as the pull-back of the Cayley bundle over a smooth quadric $Q_5$ in $\mathbb{P}_6$ via a map $f$ existing only in characteristic 2 and factorizing the Frobenius $\varphi$. The cohomology of $T$ is computed in terms of $S \otimes C$, $\varphi^*(C)$, $\text{Sym}^2(C)$ and $C$, which we handle with Borel-Bott-Weil theorem.
LA - eng
UR - http://eudml.org/doc/289609
ER -
References
top- BEAUVILLE, ARNAUD, Determinantal hypersurfaces, Michigan Math. J.48 (2000), 39-64.
- BUCHWEITZ, RAGNAR-OLAF - GREUEL, GERT-MARTIN - SCHREYER, FRANK-OLAF, Cohen-Macaulay modules on hypersurface singularities. II, Invent. Math.88 (1987), no. 1, 165-182.
- DECKER, WOLFRAM - MANOLACHE, NICOLAE - SCHREYER, FRANK-OLAF, Geometry of the Horrocks bundle on , Complex projective geometry (Trieste, 1989/ Bergen, 1989), London Math. Soc. Lecture Note Ser., vol. 179, Cambridge Univ. Press, Cambridge, 1992, pp. 128-148. Zbl0774.14013
- FAENZI, DANIELE, A Geometric Construction of Tango Bundle on , Kodai Mathematical Journal27 (2004), no. 1, 1-6. Zbl1093.14506
- GRAYSON, DANIEL R. - STILLMAN, MICHAEL E., Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/.
- HORROCKS, GEOFFREY, Examples of rank three vector bundles on five-dimensional projective space, J. London Math. Soc. (2) 18 (1978), no. 1, 15-27. Zbl0388.14009
- JANTZEN, JENS CARSTEN, Representations of algebraic groups, Pure and Applied Mathematics, vol. 131, Academic Press Inc., Boston, MA, 1987. Zbl0654.20039
- KAPRANOV, MIKHAIL M., Derived category of coherent bundles on a quadric, Funktsional. Anal. i Prilozhen.20 (1986), no. 2, 67; English translation in Funct. Anal. Appl.20 (1986), 141-142.
- NAGATA, MASAYOSHI, Complete reducibility of rational representations of a matric group, J. Math. Kyoto Univ.1 (1961/1962), 87-99. Zbl0106.25201
- OTTAVIANI, GIORGIO, On Cayley bundles on the five-dimensional quadric, Boll. Un. Mat. Ital. A (7) 4 (1990), no. 1, 87-100. Zbl0722.14006
- TANGO, HIROSHI, On morphisms from projective space to the Grassmann variety , J. Math. Kyoto Univ.16 (1976), no. 1, 201-207. Zbl0326.14015
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.