Explicit solutions for a one-phase Stefan problem with temperature-dependent thermal conductivity
María F. Natale; Domingo A. Tarzia
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-B, Issue: 1, page 79-99
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topNatale, María F., and Tarzia, Domingo A.. "Explicit solutions for a one-phase Stefan problem with temperature-dependent thermal conductivity." Bollettino dell'Unione Matematica Italiana 9-B.1 (2006): 79-99. <http://eudml.org/doc/289613>.
@article{Natale2006,
abstract = {We study a one-phase Stefan problem for a semi-infinite material with temperature-dependent thermal conductivity with a constant temperature or a heat flux condition of the type $-q_0/\sqrt\{t\}$ ($q_0 > 0$) at the fixed face $x=0$. We obtain in both cases sufficient conditions for data in order to have a parametric representation of the solution of the similarity type for $t\geq t_0>0$ with $t_0$ an arbitrary positive time. These explicit solutions are obtained through the unique solution of an integral equation with the time as a parameter.},
author = {Natale, María F., Tarzia, Domingo A.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {79-99},
publisher = {Unione Matematica Italiana},
title = {Explicit solutions for a one-phase Stefan problem with temperature-dependent thermal conductivity},
url = {http://eudml.org/doc/289613},
volume = {9-B},
year = {2006},
}
TY - JOUR
AU - Natale, María F.
AU - Tarzia, Domingo A.
TI - Explicit solutions for a one-phase Stefan problem with temperature-dependent thermal conductivity
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/2//
PB - Unione Matematica Italiana
VL - 9-B
IS - 1
SP - 79
EP - 99
AB - We study a one-phase Stefan problem for a semi-infinite material with temperature-dependent thermal conductivity with a constant temperature or a heat flux condition of the type $-q_0/\sqrt{t}$ ($q_0 > 0$) at the fixed face $x=0$. We obtain in both cases sufficient conditions for data in order to have a parametric representation of the solution of the similarity type for $t\geq t_0>0$ with $t_0$ an arbitrary positive time. These explicit solutions are obtained through the unique solution of an integral equation with the time as a parameter.
LA - eng
UR - http://eudml.org/doc/289613
ER -
References
top- ALEXIADES, V. - SOLOMON, A. D., Mathematical modeling of melting and freezing processes, Hemisphere - Taylor & Francis, Washington (1983).
- I. ATHANASOPOULOS - G. MAKRAKIS - J. F. RODRIGUES (EDS.), Free Boundary Problems: Theory and Applications, CRC Press, Boca Raton (1999). MR1702131
- BARBER, J. R., An asymptotic solution for short-time transient heat conductionbetween two similar contacting bodies, Int. J. Heat Mass Transfer, 32, No 5 (1989),943-949.
- BARRY, D. A. - SANDER, G. C., Exact solutions for water infiltration with an arbitrary surface flux or nonlinear solute adsorption, Water Resources Research, 27, No 10 (1991), 2667-2680.
- BLUMAN, G. - KUMEI, S., On the remarkable nonlinear diffusion equation, J. Math. Phys., 21 (1980), 1019-1023. Zbl0448.35027MR574874DOI10.1063/1.524550
- BRIOZZO, A. C. - NATALE, M. F. - TARZIA, D. A., Determination of unknown thermal coefficients for Storm’s-type materials through a phase-change process, Int. J.Non-Linear Mech., 34 (1999), 324-340. MR1658930DOI10.1016/S0020-7462(98)00036-5
- BROADBRIDGE, P., Non-integrability of non-linear diffusion-convection equationsin two spatial dimensions, J. Phys. A: Math. Gen., 19 (1986), 1245-1257. Zbl0617.35122MR844454
- BROADBRIDGE, P., Integrable forms of the one-dimensional flow equation for unsaturated heterogeneous porous media, J. Math. Phys., 29 (1988), 622-627. Zbl0651.76041MR931465DOI10.1063/1.528001
- CANNON, J. R., The one-dimensional heat equation, Addison - Wesley, Menlo Park (1984). Zbl0567.35001MR747979DOI10.1017/CBO9781139086967
- CARSLAW, H. S. - JAEGER, J. C., Conduction of heat in solids, Oxford University Press, London (1959). Zbl0972.80500MR959730
- J. M. CHADAM - H. RASMUSSEN H. (EDS.), Free boundary problems involving solids, Pitman Research Notes in Mathematics Series 281, Longman, Essex (1993). MR1216392
- COELHO PINHEIRO, M. N., Liquid phase mass transfer coefficients for bubbles growing in a pressure field: a simplified analysis, Int. Comm. Heat Mass Transfer,27, No 1 (2000), 99-108.
- CRANK, J., Free and moving boundary problems, Clarendon Press, Oxford (1984). Zbl0547.35001MR776227
- J. I. DIAZ - M. A. HERRERO - A. LIÑAN - J. L. VAZQUEZ (Eds.), Free boundary problems: theory and applications, Pitman Research Notes in Mathematics Series323, Longman, Essex (1995).
- FASANO, A. - PRIMICERIO, M. (Eds.), Nonlinear diffusion problems, Lecture Notes in Math., N. 1224, Springer Verlag, Berlin (1986). MR877985DOI10.1007/BFb0072686
- FOKAS, A. S. - YORTSOS, Y. C., On the exactly solvable equation occurring in two-phase flow in porous media, SIAM J. Appl. Math., 42, No 2 (1982), 318-331. MR650227DOI10.1137/0142025
- N. KENMOCHI (Ed.), Free Boundary Problems: Theory and Applications, I,II, Gakuto International Series: Mathematical Sciences and Applications, Vol. 13, 14, Gakkotosho, Tokyo (2000). MR1793016
- KNIGHT, J. H. - PHILIP, J. R., Exact solutions in nonlinear diffusion, J. Engrg. Math., 8 (1974), 219-227. Zbl0279.76043MR378593DOI10.1007/BF02353364
- LAMÉ, G. - CLAPEYRON, B. P., Memoire sur la solidification par refroidissementd’un globe liquide, Annales Chimie Physique, 47 (1831), 250-256.
- LUNARDINI, V. J., Heat transfer with freezing and thawing, Elsevier, Amsterdam (1991)
- MUNIER, A. - BURGAN, J. R. - GUTIERREZ, J. - FIJALKOW, E. - FEIX, M. R., Group transformations and the nonlinear heat diffusion equation, SIAM J. Appl. Math., 40,No 2 (1981), 191-207. Zbl0468.35051MR610415DOI10.1137/0140017
- NATALE, M. F. - TARZIA, D. A., Explicit solutions to the two-phase Stefan problemfor Storm-type materials, J. Phys. A: Math. Gen., 33 (2000), 395-404. Zbl0986.35138MR1747160DOI10.1088/0305-4470/33/2/312
- NATALE, M. F. - TARZIA, D. A., Explicit solutions to the one-phase Stefan problemwith temperature-dependent thermal conductivity and a convective term, Int. J.Engng. Sci., 41 (2003), 1685-1698. Zbl1211.35285MR1985327DOI10.1016/S0020-7225(03)00067-3
- PHILIP, R., General method of exact solution of the concentration-dependent diffusion equation, Australian J. Physics, 13 (1960), 1-12. Zbl0135.31802MR118858
- POLYANIN, A. D. - DIL’MAN, V. V., The method of the «carry over» of integral transforms in non-linear mass and heat transfer problems, Int. J. Heat Mass Transfer, 33, No 1 (1990), 175-181
- ROGERS, C., Application of a reciprocal transformation to a two-phase Stefan problem, J. Phys. A: Math. Gen., 18 (1985), 105-109. MR783186
- ROGERS, C., On a class of moving boundary problems in non-linear heat condition: Application of a Bäcklund transformation, Int. J. Non-Linear Mech., 21 (1986), 249-256. Zbl0615.35044MR893762DOI10.1016/0020-7462(86)90032-6
- ROGERS, C. - BROADBRIDGE, P., On a nonlinear moving boundary problem with heterogeneity: application of reciprocal transformation, Journal of Applied Mathematics and Physics (ZAMP), 39 (1988), 122-129. Zbl0661.35087MR928584DOI10.1007/BF00945727
- SANDER, G. C. - CUNNING, I. F. - HOGARTH, W. L. - PARLANGE, J. Y., Exact solution fornonlinear nonhysteretic redistribution in vertical soli of finite depth, Water Resources Research, 27 (1991), 1529-1536.
- TARZIA, D. A., An inequality for the coefficient of the free boundary of the Neumann solution for the two-phase Stefan problem, Quart. Appl. Math., 39(1981), 491-497. MR644103DOI10.1090/qam/644103
- TARZIA, D. A., A bibliography on moving - free boundary problems for the heat-diffusion equation. The Stefan and related problems, MAT-Serie A #2 (2000) (with 5869 titles on the subject, 300 pages). See www.austral.edu.ar/MAT-SerieA/2(2000)/ MR1802028
- TRITSCHER, P. - BROADBRIDGE, P., A similarity solution of a multiphase Stefan problem incorporating general non-linear heat conduction, Int. J. Heat Mass Transfer, 37, No 14 (1994), 2113-2121. Zbl0926.76119
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.