On the rate of convergence of the Bézier-type operators
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-B, Issue: 3, page 657-666
 - ISSN: 0392-4041
 
Access Full Article
topAbstract
topHow to cite
topAnioł, Grażyna. "On the rate of convergence of the Bézier-type operators." Bollettino dell'Unione Matematica Italiana 9-B.3 (2006): 657-666. <http://eudml.org/doc/289630>.
@article{Anioł2006,
	abstract = {For bounded functions $f$ on an interval $I$, in particular, for functions of bounded p-th power variation on $I$ there is estimated the rate of pointwise convergence of the Bezier-type modification of the discrete Feller operators. In the main theorem the Chanturiya modulus of variation is used.},
	author = {Anioł, Grażyna},
	journal = {Bollettino dell'Unione Matematica Italiana},
	language = {eng},
	month = {10},
	number = {3},
	pages = {657-666},
	publisher = {Unione Matematica Italiana},
	title = {On the rate of convergence of the Bézier-type operators},
	url = {http://eudml.org/doc/289630},
	volume = {9-B},
	year = {2006},
}
TY  - JOUR
AU  - Anioł, Grażyna
TI  - On the rate of convergence of the Bézier-type operators
JO  - Bollettino dell'Unione Matematica Italiana
DA  - 2006/10//
PB  - Unione Matematica Italiana
VL  - 9-B
IS  - 3
SP  - 657
EP  - 666
AB  - For bounded functions $f$ on an interval $I$, in particular, for functions of bounded p-th power variation on $I$ there is estimated the rate of pointwise convergence of the Bezier-type modification of the discrete Feller operators. In the main theorem the Chanturiya modulus of variation is used.
LA  - eng
UR  - http://eudml.org/doc/289630
ER  - 
References
top- ANIOL, G., On the rate of convergence of some discrete operators, Demonstratio Math., 27 (1994), 367-377. Zbl0817.41023
 - BEZIER, P., Numerical Control-Mathematics and Applications, Wiley, London1972.
 - CHANTURIYA, Z.A., Modulus of variation of function and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR, 214 (1974), 63-66. Zbl0295.26008
 - FELLER, W., An Introduction to Probability Theory and its Applications, II, Wiley, New York, 1966. Zbl0138.10207
 - GUO, S. - KHAN, M.K., On the rate of convergence of some operators on functions of bounded variation, J. Approx. Theory, 58 (1989), 90-101. Zbl0683.41030
 - HEILMANN, M., Direct and converse results for operators of Baskakov-Durrmeyer type, Approx. Theory Appl., 5:1 (1989), 105-127. Zbl0669.41014
 - PYCH-TABERSKA, P., On the rate of convergence of the Feller operators, Ann. Soc. Math. Pol., Commentat. Math., 31 (1991), 147-156. Zbl0751.60033
 - PYCH-TABERSKA, P., On the rate of convergence of the Bézier type operators, Funct. Approximatio, Comment. Math., 28 (2000), 201-209. Zbl0979.41011
 - PYCH-TABERSKA, P., Some properties of the Bézier-Kantorovich type operators, Approx. Theory, 123 (2003), 256-269. Zbl1029.41009
 - ZENG, X.M., On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, II, J. Approx. Theory, 104 (2000), 330-344. Zbl0963.41011
 - ZENG, X.M. - PIRIOU, A., On the rate of convergence of two Bernstein-Bézier type operators for bounded variation functions, J. Approx. Theory, 95 (1998), 369-387. Zbl0918.41016
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.