On the projective genus of surfaces

Pietro Sabatino

Bollettino dell'Unione Matematica Italiana (2006)

  • Volume: 9-B, Issue: 2, page 311-317
  • ISSN: 0392-4033

Abstract

top
Let X N be a smooth irreducible non degenerate surface over the complex numbers, N 4 . We define the projective genus of X , denoted by P G ( X ) , as the geometric genus of the singular curve of the projection of X from a general linear subspace of codimension four. Denote by g ( X ) the sectional genus of X . In this paper we conjecture that the only surfaces for which P G ( X ) = g ( X ) - 1 are the del Pezzo surface in 4 , in 5 and a conic bundle of degree 5 in 4 . We prove that for N 5 if P G ( X ) = g ( X ) - 1 + λ , λ a non negative integer, then g ( X ) λ + 1 + α where α = - 2 for a scroll and α = 0 otherwise, and deduce the conjecture for N 5 from this statement.

How to cite

top

Sabatino, Pietro. "On the projective genus of surfaces." Bollettino dell'Unione Matematica Italiana 9-B.2 (2006): 311-317. <http://eudml.org/doc/289631>.

@article{Sabatino2006,
abstract = {Let $X \subset \mathbb\{P\}^N$ be a smooth irreducible non degenerate surface over the complex numbers, $N \geq 4$. We define the projective genus of $X$, denoted by $PG(X)$, as the geometric genus of the singular curve of the projection of $X$ from a general linear subspace of codimension four. Denote by $g(X)$ the sectional genus of $X$. In this paper we conjecture that the only surfaces for which $PG(X) = g(X) - 1$ are the del Pezzo surface in $\mathbb\{P\}^4$, in $\mathbb\{P\}^5$ and a conic bundle of degree 5 in $\mathbb\{P\}^4$. We prove that for $N \geq 5$ if $PG(X) = g(X) - 1 + \lambda$, $\lambda$ a non negative integer, then $g(X) \leq \lambda + 1 + \alpha$ where $\alpha = -2$ for a scroll and $\alpha = 0$ otherwise, and deduce the conjecture for $N \geq 5$ from this statement.},
author = {Sabatino, Pietro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {311-317},
publisher = {Unione Matematica Italiana},
title = {On the projective genus of surfaces},
url = {http://eudml.org/doc/289631},
volume = {9-B},
year = {2006},
}

TY - JOUR
AU - Sabatino, Pietro
TI - On the projective genus of surfaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/6//
PB - Unione Matematica Italiana
VL - 9-B
IS - 2
SP - 311
EP - 317
AB - Let $X \subset \mathbb{P}^N$ be a smooth irreducible non degenerate surface over the complex numbers, $N \geq 4$. We define the projective genus of $X$, denoted by $PG(X)$, as the geometric genus of the singular curve of the projection of $X$ from a general linear subspace of codimension four. Denote by $g(X)$ the sectional genus of $X$. In this paper we conjecture that the only surfaces for which $PG(X) = g(X) - 1$ are the del Pezzo surface in $\mathbb{P}^4$, in $\mathbb{P}^5$ and a conic bundle of degree 5 in $\mathbb{P}^4$. We prove that for $N \geq 5$ if $PG(X) = g(X) - 1 + \lambda$, $\lambda$ a non negative integer, then $g(X) \leq \lambda + 1 + \alpha$ where $\alpha = -2$ for a scroll and $\alpha = 0$ otherwise, and deduce the conjecture for $N \geq 5$ from this statement.
LA - eng
UR - http://eudml.org/doc/289631
ER -

References

top
  1. HARTSHORNE, R., Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer (1997). 
  2. BELTRAMETTI, M. - SOMMESE, A. J., The Adjunction Theory of Complex Projective Varieties, De Gruyter expositions in mathematics16, de Gruyter (1995). 
  3. FRANCHETTA, A., Sulla curva doppia della proiezione della superficie generale dell’ S 4 , da un punto generico su un S 3 , Rend. Accad. d’Italia, VII-2 (1941), 282-288. 
  4. FRANCHETTA, A., Sulla curva doppia della proiezione della superficie generale dell’ S 4 , da un punto generico su un S 3 , Rend. Accad. Naz. Lincei, VIII-2 (1947), 276-279. 
  5. ENRIQUES, F., Le superficie algebriche, Zanichelli, Bologna, 1949. 
  6. FULTON, W., Intersection Theory 2th Ed., Springer (1998). 
  7. GRIFFITHS, P. - HARRIS, J., Principles of Algebraic Geometry, Wiley and Sons, 1978. Zbl0408.14001
  8. MOISHEZON, B., Complex Surfaces and connected sums of complex projective planes, SpringerLect. Notes Math., 603 (1977), 1-234. Zbl0392.32015
  9. CILIBERTO, C. - MELLA, M. - RUSSO, F., Varierties with one apparent double point, to appear in Journal of Algebraic Geometry. Zbl1077.14076
  10. IONESCU, P., Embedded projective varieties of small invariants, SpingerL.N.M., 1056 (1984), 142-186. Zbl0542.14024
  11. IONESCU, P., Embedded projective varieties of small invariants. II, Rev. Roum. Math., 31 (1986), 539-545. Zbl0606.14038
  12. PIENE, R., A proof of Noether’s formula for the arithmetic genus of an algebraic surface, Compositio Math., 38 (1979), 113-119. Zbl0399.14004
  13. SEVERI, F., Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni e ai suoi punti tripli apparenti, Rend. Circ. Mat. Palermo, 15 (1901), 33-51. Zbl32.0648.04
  14. LAKSKOV, D., Residual intersections and Todd’s formula for the double locus of a morphism, Acta. Math., 140 (1978), 75-92. 
  15. LIVORNI, E. L., Classification of algebraic surfaces with sectional genus less than or equal to six. I: rational surfaces, Pacific J. of Math., 113 (1984), 93-114. Zbl0573.14013
  16. LIVORNI, E. L., Classification of algebraic surfaces with sectional genus less than or equal to six. II: Ruled surfaces with dim ϕ K X L ( X ) = 1 , Can. J. Math., Vol. XXXVIII, No. 5 (1986), 1110-1121. Zbl0598.14030
  17. LIVORNI, E. L., Classification of algebraic surfaces with sectional genus less than or equal to six. III: Ruled surfaces with dim φ K X L ( X ) = 1 , Math. Scand., 59 (1986), 9-29. Zbl0663.14024
  18. LIVORNI, E. L., Classification of algebraic non-ruled surfaces with sectional genus less or equal to six, Nagoya Math. J., Vol. 100 (1985), 1-9. Zbl0594.14028
  19. LIVORNI, E. L., On the existence of some surfaces, Lecture Notes in Math., 1417 (1990), Springer Verlag155-179. 
  20. EIN, L., Varieties with small dual variety I, Invent. Math., 86 (1989), 63-74. Zbl0603.14025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.