A generalization of the normal holomorphic frames in symplectic manifolds

Luigi Vezzoni

Bollettino dell'Unione Matematica Italiana (2006)

  • Volume: 9-B, Issue: 3, page 723-732
  • ISSN: 0392-4033

Abstract

top
In this paper we give a generalization of the normal holomorphic frames in symplectic manifolds and find conditions for the integrability of complex structures.

How to cite

top

Vezzoni, Luigi. "A generalization of the normal holomorphic frames in symplectic manifolds." Bollettino dell'Unione Matematica Italiana 9-B.3 (2006): 723-732. <http://eudml.org/doc/289632>.

@article{Vezzoni2006,
abstract = {In this paper we give a generalization of the normal holomorphic frames in symplectic manifolds and find conditions for the integrability of complex structures.},
author = {Vezzoni, Luigi},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {723-732},
publisher = {Unione Matematica Italiana},
title = {A generalization of the normal holomorphic frames in symplectic manifolds},
url = {http://eudml.org/doc/289632},
volume = {9-B},
year = {2006},
}

TY - JOUR
AU - Vezzoni, Luigi
TI - A generalization of the normal holomorphic frames in symplectic manifolds
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/10//
PB - Unione Matematica Italiana
VL - 9-B
IS - 3
SP - 723
EP - 732
AB - In this paper we give a generalization of the normal holomorphic frames in symplectic manifolds and find conditions for the integrability of complex structures.
LA - eng
UR - http://eudml.org/doc/289632
ER -

References

top
  1. ABBENA, E., An example of an almost Kähler manifold which is not Kahlerian, Boll. Un. Mat. Ital. (6) 3A (1984), 383-392. Zbl0559.53023
  2. AUDIN, M. - LAFONTAINE, J., Holomorphic curves in symplectic geometry, Progress in mathematics, 117, 1994. Zbl0802.53001
  3. APOSTOLOV, V. - DRAGHICI, T. - KOTSCHICK, D., An integrability theorem for almost Kähler 4-manifolds, C. R. Acad. Sci. Paris329, ser I (1999), 413-418. Zbl0944.53041
  4. APOSTOLOV, V. - DRAGHICI, T., The curvature and the integrability of almost-Kähler manifolds: a survey, e-print. 
  5. DE BARTOLOMEIS, P. - TOMASSINI, A., On Formality of Some Symplectic Manifolds, Internat. Math. Res. Notices2001, No. 24. Zbl1004.53068
  6. GENTILI, G. - PODESTÀ, F. - VESENTINI, E., Lezioni di geometria differenziale, Bollati Boringhieri, Torino1995. 
  7. GRIFFITHS, P. - HARRIS, J., Principles of Algebraic Geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. Zbl0408.14001
  8. KOBAYASHI, S. - NOMIZU, K., Foundations of Differential Geometry, I-II, New York, Interscience1969. Zbl0175.48504
  9. KODAIRA, K. - MORROW, J., Complex Manifolds, Holt, Rinehart and Winston, New York1971. 
  10. SEKIGAWA, K., On some Einstein almost Kähler manifolds, J. Math. Soc. Japan Vol.39 No. 4, 1987. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.