Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity
Giuseppe De Donno; Alessandro Oliaro
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-B, Issue: 3, page 583-610
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDe Donno, Giuseppe, and Oliaro, Alessandro. "Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity." Bollettino dell'Unione Matematica Italiana 9-B.3 (2006): 583-610. <http://eudml.org/doc/289636>.
@article{DeDonno2006,
abstract = {We propose a unified approach, based on methods from microlocal analysis, for characterizing the hypoellipticity and the local solvability in $C^\infty$ and Gevrey $G^\lambda$ classes of semilinear anisotropic partial differential operators with Gevrey nonlinear perturbations, in dimension $n \geq 3$. The conditions for our results are imposed on the sign of the lower order terms of the linear part of the operator, see Theorem 1.1 and Theorem 1.3 below.},
author = {De Donno, Giuseppe, Oliaro, Alessandro},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {583-610},
publisher = {Unione Matematica Italiana},
title = {Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity},
url = {http://eudml.org/doc/289636},
volume = {9-B},
year = {2006},
}
TY - JOUR
AU - De Donno, Giuseppe
AU - Oliaro, Alessandro
TI - Hypoellipticity and local solvability of anisotropic PDEs with Gevrey nonlinearity
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/10//
PB - Unione Matematica Italiana
VL - 9-B
IS - 3
SP - 583
EP - 610
AB - We propose a unified approach, based on methods from microlocal analysis, for characterizing the hypoellipticity and the local solvability in $C^\infty$ and Gevrey $G^\lambda$ classes of semilinear anisotropic partial differential operators with Gevrey nonlinear perturbations, in dimension $n \geq 3$. The conditions for our results are imposed on the sign of the lower order terms of the linear part of the operator, see Theorem 1.1 and Theorem 1.3 below.
LA - eng
UR - http://eudml.org/doc/289636
ER -
References
top- BOURDAUD, G. - REISSIG, M. - SICKEL, W., Hyperbolic equations, function spaces with exponential weights and Nemytskij operators, Ann. Mat. Pura Appl., 4 182 (2003), no. 4, 409-455. Zbl1225.47077
- CADEDDU, L. - GRAMCHEV, T., Nonlinear estimates in anisotropic Gevrey spaces, Pliska Stud. Math. Bulgar.15 (2003), 149-160.
- CORLI, A., On local solvability in Gevrey classes of linear partial differential operators with multiple characteristics, Comm. Partial Differential Equations14 (1989), 1-25. Zbl0668.35002
- CORLI, A., On local solvability of linear partial differential operators with multiple characteristics, J. Differential Equations, 81 (1989), 275-293. Zbl0701.35002
- DE DONNO, G. - OLIARO, A., Local solvability and hypoellipticity in Gevrey classes for semilinear anisotropic partial differential equations, Trans. Amer. Math. Soc., 355 (2003), no. 8, 3405-3432. Zbl1039.35151
- DE DONNO, G. - RODINO, L., Gevrey hypoellipticity for partial differential equations with characteristics of higher multiplicity, Rend. Sem. Mat. Univ. Politec. Torino, 58 (2000), no. 4, 435-448 (2003). Zbl1072.35214
- GARELLO, G., Inhomogeneuos paramultiplication and microlocal singularities for semilinear equations, Boll. Un. Mat. Ital. B. (7), 10 (1996), 885-902. Zbl0888.35145
- GARELLO, G., Local solvability for semilinear equations with multiple characteristics, Ann. Univ. Ferrara Sez. VII, (N.S.) 41, (1996), 199-209, suppl. Zbl0883.35038
- GRAMCHEV, T., On the critical index of Gevrey solvability for some linear partial differential equations, Workshop on Partial Differential Equations (Ferrara 1999), Ann. Univ. Ferrara Sez. VII (N.S.), suppl., 45 (2000), 139-153. Zbl0986.35002
- GRAMCHEV, T. - POPIVANOV, P., Local Solvability of Semilinear Partial Differential Equations, Ann. Univ. Ferrara Sez. VII - Sc. Mat., 35 (1989), 147-154. Zbl0733.35028
- GRAMCHEV, T., POPIVANOV, P. - YOSHINO, M., Critical Gevrey Index for Hypoellipticity of Parabolic Equations and Newton Polygones, Ann. Mat. Pura Appl., 170 (1996), 103-131. Zbl0874.35029
- GRAMCHEV, T. RODINO, L., Gevrey solvability for semilinear partial differential equations with multiple characterisitics, Boll. Un. Mat. Ital., B (8) 2 (1999), 65-120. Zbl0924.35030
- HÖRMANDER, L., The analysis of linear partial differential operators, vol. I, II, III, IV, Springer-Verlag, Berlin, 1983-85.
- HOUNIE, J. - SANTIAGO, P., On the local solvability of semilinear equations, Comm. in Partial Differential Equations, 20 (1995), 1777-1789. Zbl0838.35003
- HUNT, C. - PIRIOU, A., Majorations et inégalité sous-elliptique pour les opérateurs pseudo-différentiels anisotropes d'ordre variable, C. R. Acad. Sci. Paris, 268 (1969), 214-217. Zbl0165.43702
- HUNT, C. - PIRIOU, A., Opérateurs pseudo-différentiels anisotropes d'ordre variable, C. R. Acad. Sci. Paris, 268 (1969), 28-31. Zbl0176.39803
- KAJITANI, K. - WAKABAYASHI, S., Hypoelliptic operators in Gevrey classes, in ``Recent developments in hyperbolic equations'' L. Cattabriga, F. Colombini, M.K.V. Murthy (London) (S. Spagnolo, ed.), Longman, 1988, 115-134. Zbl0733.35029
- KOMATSU, H., Ultradistributions, I: Structure theorems and a characterisation; II: The kernel theorem and ultradistributions with support in a submanifold; III: Vector valued ultradistributions and the theory of kernels, J. Fac. Sci. Univ. Tokyo, Sect. IA 20 (1973), 25-105, 24 (1977), 607-628, 29 (1982), 653-717.
- LIESS, O. - RODINO, L., Inhomogeneous Gevrey classes and related pseudo-differential operators, Boll. Un. Mat. Ital., Sez. IV, 3-C (1984), 133-223. Zbl0557.35131
- LIESS, O. - RODINO, L., Linear partial differential equations with multiple involutive characteristics, in ``Microlocal analysis and spectral theory'' (Dordrecht) (L. Rodino, ed.), Kluwer, 1997, 1-38. Zbl0884.35184
- LORENZ, M., Anisotropic operators with characteristics of constant multiplicity, Math. Nachr., 124 (1985), 199-216. Zbl0596.35010
- MARCO, J.-P. - SAUZIN, D., Stability and instability for Gevrey quasi-convex near integrable Hamiltonian systems, Publ. Math. Inst. Hautes Études Sci.96 (2002), 199-275. Zbl1086.37031
- MARCOLONGO, P., OLIARO, A., Local Solvability for Semilinear Anisotropic Partial Differential Equations, Annali Mat. Pura Appl. (4) 179 (2001), 229-262. Zbl1220.35005
- MASCARELLO, M. - RODINO, L., Partial differential equations with multiple characteristics, Wiley-VCH, Berlin, 1997. Zbl0888.35001
- POPIVANOV, P. R., Microlocal properties of a class of pseudodifferential operators with double involutive characteristics, Partial differential equations (Warsaw, 1984), Banach Center Publ., PWN, Warsaw, 19 (1987), 213-224.
- POPIVANOV, P. R., Local solvability of some classes of linear differential operators with multiple characteristics, Ann. Univ. Ferrara, VII, Sc. Mat., 45 (1999), 263-274. Zbl0993.35025
- POPIVANOV, P. R. - POPOV, G. S., Microlocal properties of a class of pseudo-differential operators with multiple characteristics, Serdica, 6 (1980), 169-183.
- RODINO, L., Linear partial differential operators in Gevrey spaces, World Scientific, Singapore, 1993. Zbl0869.35005
- ROUMIEU, C., Ultra-distributions définies sur et sur certaines classes de variétés differentiables, J. Analyse Math., 101962/1963, 153-192. Zbl0122.34802
- TRÈVES, F., Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.
- ŠANANIN, N. A., The local solvability of equations of quasi-principal type, Mat. Sb. (N.S.)97 (139), no 4 (8) (1975), 503-516.
- WAKABAYASHI, S., Singularities of solution of the cauchy problem for hyperbolic system in gevrey classes, Japan J. Math., 11 (1985), 157-201. Zbl0595.35071
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.