Artinian automorphisms of infinite groups
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-B, Issue: 3, page 575-582
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topLeone, Antonella. "Artinian automorphisms of infinite groups." Bollettino dell'Unione Matematica Italiana 9-B.3 (2006): 575-582. <http://eudml.org/doc/289638>.
@article{Leone2006,
abstract = {An automorphism a of a group G is called an artinian automorphism if for every strictly descending chain $H_1 > H_2 > \cdots > H_n > \cdots$ of subgroups of G there exists a positive integer $m$ such that $(H_n)^a = H_n$ for every $n \geq m$. In this paper we show that in many cases the group of all artinian automorphisms of $G$ coincides with the group of all power automorphisms of $G$.},
author = {Leone, Antonella},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {575-582},
publisher = {Unione Matematica Italiana},
title = {Artinian automorphisms of infinite groups},
url = {http://eudml.org/doc/289638},
volume = {9-B},
year = {2006},
}
TY - JOUR
AU - Leone, Antonella
TI - Artinian automorphisms of infinite groups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2006/10//
PB - Unione Matematica Italiana
VL - 9-B
IS - 3
SP - 575
EP - 582
AB - An automorphism a of a group G is called an artinian automorphism if for every strictly descending chain $H_1 > H_2 > \cdots > H_n > \cdots$ of subgroups of G there exists a positive integer $m$ such that $(H_n)^a = H_n$ for every $n \geq m$. In this paper we show that in many cases the group of all artinian automorphisms of $G$ coincides with the group of all power automorphisms of $G$.
LA - eng
UR - http://eudml.org/doc/289638
ER -
References
top- BEIDLEMAN, J. C. - HEINEKEN, H., A note on I-Automorphisms, J. Algebra, 234 (2000), 694-706. Zbl0976.20022
- COOPER, C. D. H., Power automorphisms of a group, Math. Z., 107 (1968), 335-356. Zbl0169.33801
- CURZIO, M. - FRANCIOSI, S. - DE GIOVANNI, F., On automorphisms fixing infinite subgroups of groups, Arch. Math.54 (1990), 4-13. Zbl0664.20018
- HARTLEY, B., Fixed points of automorphisms of certain locally finite groups and Chevalley groups, J. London Math. Soc. (2), 37 (1988), 421-436. Zbl0619.20018
- PHILLIPS, R. E. - WILSON, J. S., On certain minimal conditions for infinite groups, J. Algebra, 51 (1978), 41-68. Zbl0374.20042
- ROBINSON, D. J. S., Finiteness Conditions and Generalized Soluble Groups, Springer, Berlin, 1972. Zbl0243.20032
- ŠUNKOV, V. P., On the minimality problem for locally finite groups, Algebra and Logic, 9 (1970), 137-151.
- ZAICEV, D. I., On solvable subgroups of locally solvable groups, Soviet. Math. Dokl., 15 (1974), 342-345. Zbl0322.20017
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.