On some properties of explicit toric degenerations
Bollettino dell'Unione Matematica Italiana (2006)
- Volume: 9-B, Issue: 3, page 779-784
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topReferences
top- ALEXEEV, V., Complete moduli in the presence of semiabelian group action, Ann. Math., 155 (2002), 611-708. Zbl1052.14017
- COX, D., What is a toric variety?, Topics in algebraic geometry and geometric modeling, 203-223, Contemp. Math., 334, Amer. Math. Soc., Providence, RI, (2003); also avalaible at http://www.amherst.edu/dacox/ Zbl1038.14021
- FULTON, W., Introduction to Toric Varieties, Ann. of Math. Studies, 13, Princeton University Press, (1993). Zbl0813.14039
- GRASSI, A. - MARCHISIO, M. - PERDUCA, V., On Some Geometric Properties of Explicit Toric Degenerations, in preparation. Zbl1150.14010
- GRAYSON, D. R. - STILLMAN, M. E., Macaulay 2, a software system for research in algebraic geometry, Avalaible at http://www.math.uiuc.edu/Macaulay2/
- HU, S., Semistable Degeneration of Toric Varieties and Their Hypersurfaces, Communications in Analysis and Geometry, 14, n. 1 (2006), 59-89; arXiv:math.AG/0110091, (2001), 1-26.
- MARCHISIO, M. - PERDUCA, V., On Some Properties of Explicit Toric Degenerations, preprint, 2006. Zbl1150.14010
- ODA, T., Convex Bodies and Algebraic Geometry, 15, Springer-Verlag, BerlinHeidelberg (1988). Zbl0628.52002
- SOTTILE, F., Toric ideals, real toric varieties, and the moment map, Topics in algebraic geometry and geometric modeling, 225-240, Contemp. Math., 334, Amer. Math. Soc., Providence, RI, (2003); arXiv:math.AG/0212044. Zbl1051.14059
- STRUMFELS, B., Grobner Bases and Convex Polytopes, American Mathematical Society, University Lecture Series, 8, Providence, RI (1996). MR 97b:13034.