Properties of modulus of monotonicity and Opial property in direct sums
Joanna Markowicz; Stanisław Prus
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)
- Volume: 71, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topJoanna Markowicz, and Stanisław Prus. "Properties of modulus of monotonicity and Opial property in direct sums." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.2 (2017): null. <http://eudml.org/doc/289726>.
@article{JoannaMarkowicz2017,
	abstract = {We give an example of a Banach lattice with a non-convex modulus of monotonicity, which disproves a claim made in the literature. Results on preservation of the non-strict Opial property and Opial property under passing to general direct sums of Banach spaces are established.},
	author = {Joanna Markowicz, Stanisław Prus},
	journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
	keywords = {Banach lattice; modulus of monotonicity; direct sum; non-strict Opial property; Opial property},
	language = {eng},
	number = {2},
	pages = {null},
	title = {Properties of modulus of monotonicity and Opial property in direct sums},
	url = {http://eudml.org/doc/289726},
	volume = {71},
	year = {2017},
}
TY  - JOUR
AU  - Joanna Markowicz
AU  - Stanisław Prus
TI  - Properties of modulus of monotonicity and Opial property in direct sums
JO  - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY  - 2017
VL  - 71
IS  - 2
SP  - null
AB  - We give an example of a Banach lattice with a non-convex modulus of monotonicity, which disproves a claim made in the literature. Results on preservation of the non-strict Opial property and Opial property under passing to general direct sums of Banach spaces are established.
LA  - eng
KW  - Banach lattice; modulus of monotonicity; direct sum; non-strict Opial property; Opial property
UR  - http://eudml.org/doc/289726
ER  - 
References
top- Day, M. M., Normed Linear Spaces, Springer-Verlag, Berlin-Gottingen-Heidelberg, 1962.
- Hardtke, J.-D., WORTH property, Garcıa-Falset coefficient and Opial property of infinite sums, Comment. Math. 55 (2015), 23-44.
- Kirk, W. A., Sims, B. (eds.), Handbook of Metric Fixed Point Theory, Kluwer Acad. Publ., Dordrecht, 2001.
- Kutzarova, D., Landes, T., Nearly uniform convexity of infinite direct sums, Indiana Univ. Math. J. 41, No. 4 (1992), 915-926.
- Kurc, W., A dual property to uniform monotonicity in Banach lattices, Collect. Math. 44 (1993), 155-165.
- Lindenstrauss, J., Tzafriri, L., Classical Banach Spaces II, Springer-Verlag, New York, 1979.
- Meyer-Nieberg, P., Banach Lattices, Springer-Verlag, Berlin, 1991.
- Opial, Z., Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc. 73 (1967), 591-597.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.
 
 