Coefficient bounds for some subclasses of p-valently starlike functions
C. Selvaraj; O. S. Babu; G. Murugusundaramoorthy
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2013)
- Volume: 67, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topC. Selvaraj, O. S. Babu, and G. Murugusundaramoorthy. "Coefficient bounds for some subclasses of p-valently starlike functions." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 67.2 (2013): null. <http://eudml.org/doc/289727>.
@article{C2013,
abstract = {For functions of the form \[f(z) = z^\{p\} + \sum \_\{n = 1\}^\{\infty \} a\_\{p + n\} z^\{p + n\}\]
we obtain sharp bounds for some coefficients functionals in certain subclasses of starlike functions. Certain applications of our main results are also given. In particular, Fekete-Szego-like inequality for classes of functions defined through extended fractional differintegrals are obtained.},
author = {C. Selvaraj, O. S. Babu, G. Murugusundaramoorthy},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Analytic functions; starlike functions; convex functions; p-valent functions; subordination; convolution; Fekete-Szego inequality.},
language = {eng},
number = {2},
pages = {null},
title = {Coefficient bounds for some subclasses of p-valently starlike functions},
url = {http://eudml.org/doc/289727},
volume = {67},
year = {2013},
}
TY - JOUR
AU - C. Selvaraj
AU - O. S. Babu
AU - G. Murugusundaramoorthy
TI - Coefficient bounds for some subclasses of p-valently starlike functions
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2013
VL - 67
IS - 2
SP - null
AB - For functions of the form \[f(z) = z^{p} + \sum _{n = 1}^{\infty } a_{p + n} z^{p + n}\]
we obtain sharp bounds for some coefficients functionals in certain subclasses of starlike functions. Certain applications of our main results are also given. In particular, Fekete-Szego-like inequality for classes of functions defined through extended fractional differintegrals are obtained.
LA - eng
KW - Analytic functions; starlike functions; convex functions; p-valent functions; subordination; convolution; Fekete-Szego inequality.
UR - http://eudml.org/doc/289727
ER -
References
top- Ali, R. M., Ravichandran, V., Seenivasagan, N., Coefficient bounds for p-valent functions, Appl. Math. Comput. 187 (2007), 35–46.
- Janowski, W., Some extremal problems for certain families of analytic functions, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 21 (1973), 17–25.
- Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.
- Ma, W. C., Minda, D., A unified treatment of some special classes of univalent functions, Proceedings of the Conference on Complex Analysis (Tianjin, 1992), Int. Press, Cambridge, MA, 1994, 157–169.
- Owa, S., On the distortion theorem. I, Kyungpook Math. J. 18 (1) (1978), 53–59.
- Owa, S., Srivastava, H. M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39 (5) (1987), 1057–1077.
- Patel, J., Mishra, A., On certain subclasses of multivalent functions associated with an extended differintegral operator, J. Math. Anal. Appl. 332 (2007), 109–122.
- Prokhorov, D. V., Szynal, J., Inverse coefficients for -convex functions, Ann. Univ. Mariae Curie-Skłodowska Sect. A 35 (1981), 125–143.
- Selvaraj, C., Selvakumaran, K. A., Fekete–Szego problem for some subclass of analytic functions, Far East J. Math. Sci. (FJMS) 29 (3) (2008), 643–652.
- Srivastava, H. M., Mishra, A. K., Das, M. K., The Fekete–Szego problem for a subclass of close-to-convex functions, Complex Variables Theory Appl. 44 (2) (2001), 145–163.
- Srivastava, H. M., Owa, S., An application of the fractional derivative, Math. Japon. 29 (3) (1984), 383–389.
- Srivastava, H. M., Owa, S., Univalent Functions, Fractional Calculus and their Applications, Halsted Press/John Wiley & Sons, Chichester–New York, 1989.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.