On (2-d)-kernels in the cartesian product of graphs

Paweł Bednarz; Iwona Włoch

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2016)

  • Volume: 70, Issue: 2
  • ISSN: 0365-1029

Abstract

top
In this paper we study the problem of the existence of (2-d)-kernels in the cartesian product of graphs. We give sufficient conditions for the existence of (2-d)-kernels in the cartesian product and also we consider the number of (2-d)-kernels.

How to cite

top

Paweł Bednarz, and Iwona Włoch. "On (2-d)-kernels in the cartesian product of graphs." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 70.2 (2016): null. <http://eudml.org/doc/289729>.

@article{PawełBednarz2016,
abstract = {In this paper we study the problem of the existence of (2-d)-kernels in the cartesian product of graphs. We give sufficient conditions for the existence of (2-d)-kernels in the cartesian product and also we consider the number of (2-d)-kernels.},
author = {Paweł Bednarz, Iwona Włoch},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Independence; domination; cartesian product; (2-d)-kernel},
language = {eng},
number = {2},
pages = {null},
title = {On (2-d)-kernels in the cartesian product of graphs},
url = {http://eudml.org/doc/289729},
volume = {70},
year = {2016},
}

TY - JOUR
AU - Paweł Bednarz
AU - Iwona Włoch
TI - On (2-d)-kernels in the cartesian product of graphs
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2016
VL - 70
IS - 2
SP - null
AB - In this paper we study the problem of the existence of (2-d)-kernels in the cartesian product of graphs. We give sufficient conditions for the existence of (2-d)-kernels in the cartesian product and also we consider the number of (2-d)-kernels.
LA - eng
KW - Independence; domination; cartesian product; (2-d)-kernel
UR - http://eudml.org/doc/289729
ER -

References

top
  1. Bednarz, P., Hernandez-Cruz, C., Włoch, I., On the existence and the number of (2-d)-kernels in graphs, Ars Combin. 121 (2015), 341-351. 
  2. Bednarz, P., Włoch, I., An algorithm determining (2-d)-kernels in trees, Util. Math., in print. 
  3. Diestel, R., Graph Theory, Springer-Verlag, Heidelberg, New York, 2005. 
  4. Galeana-Sanchez, H., Gomez, R., (k, l)-kernels, (k, l)-semikernels, k-Grundy functions and duality for state splittings, Discuss. Math. Graph Theory 27 (2007), 359-371. 
  5. Galeana-Sanchez, H., Hernandez-Cruz, C., On the existence of k-kernels in digraphs and in weighted digraphs, AKCE Int. J. Graphs Comb. 7 (2) (2010), 201-215. 
  6. Galeana-Sanchez, H., Hernandez-Cruz, C., k-kernels in generalizations of transitive digraphs, Discuss. Math. Graph Theory 31 (2) (2011), 293-312. 
  7. Galeana-Sanchez, H., Hernandez-Cruz, C., Cyclically k-partite digraphs and k-kernels, Discuss. Math. Graph Theory 31 (1) (2011), 63-78. 
  8. Galeana-Sanchez, H., Hernandez-Cruz, C., On the existence of (k, l)-kernels in infinite digraphs: A survey, Discuss. Math. Graph Theory 34 (3) (2014), 431-466. 
  9. Galeana-Sanchez, H., Pastrana-Ramırez, L., Extending digraphs to digraphs with (without) k-kernel, Int. J. Contemp. Math. Sci. 3 (5) (2008), 229-243. 
  10. Galeana-Sanchez, H., Pastrana-Ramırez, L., k-kernels in the orientation of the path graph, Int. J. Contemp. Math. Sci. 5 (5) (2010), 231-242. 
  11. Galeana-Sanchez, H., Pastrana-Ramırez, L., A construction that preserves the number of k-kernels, Int. J. Contemp. Math. Sci. 6 (10) (2011), 491-502. 
  12. Imrich, W., Klavzar, S., Rall, D. F., Topics in Graph Theory: Graphs and Their Cartesian Product, A. K. Peters Ltd., Wellesley Massachusetts, 2008. 
  13. Kucharska, M., Kwasnik, M., On (k, l)-kernels of special superdigraphs of P m and C m , Discuss. Math. Graph Theory 21 (1) (2001), 95-109. 
  14. Kwasnik, M., (k, l)-kernels in graphs and in their products, Ph.D. Dissertation, Wrocław, 1980. 
  15. Szumny, W., Włoch, A., Włoch, I., On (k, l)-kernels in D-join of digraphs, Discuss. Math. Graph Theory 27 (2007), 457-470. 
  16. Szumny, W., Włoch, A., Włoch, I., On the existence and on the number of (k, l)-kernels in the lexicographic product of graphs, Discrete Math. 308 (20) (2008), 4616-4624. 
  17. Włoch, A., On 2-dominating kernels in graphs, Australas. J. Combin. 53 (2012), 273-284. 
  18. Włoch, A., Włoch, I., On (k, l)-kernels in generalized products, Discrete Math. 164 (1997), 295-301. 
  19. Włoch, A., Włoch, I., On (k, l)-kernels in the corona of digraphs, Int. J. Pure Appl. Math. 53 (4) (2009), 571-582. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.