The natural operators of general affine connections into general affine connections

Jan Kurek; Włodzimierz M. Mikulski

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2017)

  • Volume: 71, Issue: 1
  • ISSN: 0365-1029

Abstract

top
We reduce the problem of describing all f m -natural operators  transforming general affine connections on m -manifolds into general affine ones to the known description of all G L ( 𝐑 m ) -invariant maps 𝐑 m * 𝐑 m k 𝐑 m * k 𝐑 m for k = 1 , 3 .

How to cite

top

Jan Kurek, and Włodzimierz M. Mikulski. "The natural operators of general affine connections into general affine connections." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 71.1 (2017): null. <http://eudml.org/doc/289733>.

@article{JanKurek2017,
abstract = {We reduce the problem of describing all $\mathcal \{M\} f_m$-natural operators  transforming general affine connections on $m$-manifolds into general affine ones to the known description of all $GL(\mathbf \{R\}^m)$-invariant maps $\mathbf \{R\}^\{m*\}\otimes \mathbf \{R\}^m\rightarrow \otimes ^k\mathbf \{R\}^\{m*\}\otimes \otimes ^k\mathbf \{R\}^m$ for $k=1,3$.},
author = {Jan Kurek, Włodzimierz M. Mikulski},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {General affine connection; natural operator},
language = {eng},
number = {1},
pages = {null},
title = {The natural operators of general affine connections into general affine connections},
url = {http://eudml.org/doc/289733},
volume = {71},
year = {2017},
}

TY - JOUR
AU - Jan Kurek
AU - Włodzimierz M. Mikulski
TI - The natural operators of general affine connections into general affine connections
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2017
VL - 71
IS - 1
SP - null
AB - We reduce the problem of describing all $\mathcal {M} f_m$-natural operators  transforming general affine connections on $m$-manifolds into general affine ones to the known description of all $GL(\mathbf {R}^m)$-invariant maps $\mathbf {R}^{m*}\otimes \mathbf {R}^m\rightarrow \otimes ^k\mathbf {R}^{m*}\otimes \otimes ^k\mathbf {R}^m$ for $k=1,3$.
LA - eng
KW - General affine connection; natural operator
UR - http://eudml.org/doc/289733
ER -

NotesEmbed ?

top

You must be logged in to post comments.