Solution of a functional equation on compact groups using Fourier analysis

Abdellatif Chahbi; Brahim Fadli; Samir Kabbaj

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2015)

  • Volume: 69, Issue: 2
  • ISSN: 0365-1029

Abstract

top
Let G be a compact group, let n N { 0 , 1 } be a fixed element and let σ be a continuous automorphism on G such that σ n = I . Using the non-abelian Fourier transform, we determine the non-zero continuous solutions f : G C of the functional equation f ( x y ) + k = 1 n - 1 f ( σ k ( y ) x ) = n f ( x ) f ( y ) , x , y G , in terms of unitary characters of G .

How to cite

top

Abdellatif Chahbi, Brahim Fadli, and Samir Kabbaj. "Solution of a functional equation on compact groups using Fourier analysis." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 69.2 (2015): null. <http://eudml.org/doc/289737>.

@article{AbdellatifChahbi2015,
abstract = {Let $G$ be a compact group, let $n \in N\setminus \lbrace 0,1\rbrace $ be a fixed element and let $\sigma $ be a continuous automorphism on $G$ such that $\sigma ^n=I$. Using the non-abelian Fourier transform, we determine the non-zero continuous solutions $f:G \rightarrow C$ of the functional equation \[ f(xy)+\sum \_\{k=1\}^\{n-1\}f(\sigma ^k(y)x)=nf(x)f(y),\ x,y \in G,\] in terms of unitary characters of $G$.},
author = {Abdellatif Chahbi, Brahim Fadli, Samir Kabbaj},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Functional equation; non-abelian Fourier transform; representation of a compact group.},
language = {eng},
number = {2},
pages = {null},
title = {Solution of a functional equation on compact groups using Fourier analysis},
url = {http://eudml.org/doc/289737},
volume = {69},
year = {2015},
}

TY - JOUR
AU - Abdellatif Chahbi
AU - Brahim Fadli
AU - Samir Kabbaj
TI - Solution of a functional equation on compact groups using Fourier analysis
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2015
VL - 69
IS - 2
SP - null
AB - Let $G$ be a compact group, let $n \in N\setminus \lbrace 0,1\rbrace $ be a fixed element and let $\sigma $ be a continuous automorphism on $G$ such that $\sigma ^n=I$. Using the non-abelian Fourier transform, we determine the non-zero continuous solutions $f:G \rightarrow C$ of the functional equation \[ f(xy)+\sum _{k=1}^{n-1}f(\sigma ^k(y)x)=nf(x)f(y),\ x,y \in G,\] in terms of unitary characters of $G$.
LA - eng
KW - Functional equation; non-abelian Fourier transform; representation of a compact group.
UR - http://eudml.org/doc/289737
ER -

References

top
  1. Akkouchi, M., Bouikhalene, B., Elqorachi, E., Functional equations and K-spherical functions, Georgian Math. J. 15 (2008), 1-20. 
  2. An, J., Yang, D.,Nonabelian harmonic analysis and functional equations on compact groups, J. Lie Theory 21 (2011), 427-455. 
  3. Badora, R., On a joint generalization of Cauchy's and d'Alembert's functional equations, Aequationes Math. 43 (1992), 72-89. 
  4. Chahbi, A., Fadli, B., Kabbaj, S., Functional equations of Cauchy's and d'Alembert's type on compact groups, Proyecciones (Antofagasta) 34 (2015), 297-305. 
  5. Chojnacki, W., On some functional equation generalizing Cauchy's and d'Alembert's functional equations, Colloq. Math. 55 (1988), 169-178. 
  6. Chojnacki, W., On group decompositions of bounded cosine sequences, Studia Math. 181 (2007), 61-85. 
  7. Chojnacki, W., On uniformly bounded spherical functions in Hilbert space, Aequationes Math. 81 (2011), 135-154. 
  8. Fadli, B., Zeglami, D., Kabbaj, S., A variant of Wilson's functional equation, Publ. Math. Debrecen, to appear. 
  9. Davison, T. M. K., D'Alembert's functional equation on topological groups, Aequationes Math. 76 (2008), 33-53. 
  10. Davison, T. M. K., D'Alembert's functional equation on topological monoids, Publ. Math. Debrecen, 75 (2009), 41-66. 
  11. de Place Friis, P., D'Alembert's and Wilson's equation on Lie groups, Aequationes Math. 67 (2004), 12-25. 
  12. Elqorachi, E., Akkouchi, M., Bakali, A., Bouikhalene, B., Badora's equation on non-Abelian locally compact groups, Georgian Math. J. 11 (2004), 449-466. 
  13. Folland, G., A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, 1995. 
  14. Shin'ya, H., Spherical matrix functions and Banach representability for locally compact motion groups, Japan. J. Math. (N.S.), 28 (2002), 163-201. 
  15. Stetkaer, H., D'Alembert's functional equations on metabelian groups, Aequationes Math. 59 (2000), 306-320. 
  16. Stetkaer, H., D'Alembert's and Wilson's functional equations on step 2 nilpotent groups, Aequationes Math. 67 (2004), 241-262. 
  17. Stetkaer, H., Properties of d'Alembert functions, Aequationes Math. 77 (2009), 281-301. 
  18. Stetkaer, H., Functional Equations on Groups, World Scientfic, Singapore, 2013. 
  19. Stetkaer, H., D'Alembert's functional equation on groups, Banach Center Publ. 99 (2013), 173-191. 
  20. Stetkaer, H., A variant of d'Alembert's functional equation, Aequationes Math. 89 (2015), 657-662. 
  21. Yang, D., Factorization of cosine functions on compact connected groups, Math. Z. 254 (2006), 655-674. 
  22. Yang, D., Functional equations and Fourier analysis, Canad. Math. Bull. 56 (2013), 218-224. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.