Solution of a functional equation on compact groups using Fourier analysis
Abdellatif Chahbi; Brahim Fadli; Samir Kabbaj
Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica (2015)
- Volume: 69, Issue: 2
- ISSN: 0365-1029
Access Full Article
topAbstract
topHow to cite
topAbdellatif Chahbi, Brahim Fadli, and Samir Kabbaj. "Solution of a functional equation on compact groups using Fourier analysis." Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica 69.2 (2015): null. <http://eudml.org/doc/289737>.
@article{AbdellatifChahbi2015,
abstract = {Let $G$ be a compact group, let $n \in N\setminus \lbrace 0,1\rbrace $ be a fixed element and let $\sigma $ be a continuous automorphism on $G$ such that $\sigma ^n=I$. Using the non-abelian Fourier transform, we determine the non-zero continuous solutions $f:G \rightarrow C$ of the functional equation \[ f(xy)+\sum \_\{k=1\}^\{n-1\}f(\sigma ^k(y)x)=nf(x)f(y),\ x,y \in G,\]
in terms of unitary characters of $G$.},
author = {Abdellatif Chahbi, Brahim Fadli, Samir Kabbaj},
journal = {Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica},
keywords = {Functional equation; non-abelian Fourier transform; representation of a compact group.},
language = {eng},
number = {2},
pages = {null},
title = {Solution of a functional equation on compact groups using Fourier analysis},
url = {http://eudml.org/doc/289737},
volume = {69},
year = {2015},
}
TY - JOUR
AU - Abdellatif Chahbi
AU - Brahim Fadli
AU - Samir Kabbaj
TI - Solution of a functional equation on compact groups using Fourier analysis
JO - Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica
PY - 2015
VL - 69
IS - 2
SP - null
AB - Let $G$ be a compact group, let $n \in N\setminus \lbrace 0,1\rbrace $ be a fixed element and let $\sigma $ be a continuous automorphism on $G$ such that $\sigma ^n=I$. Using the non-abelian Fourier transform, we determine the non-zero continuous solutions $f:G \rightarrow C$ of the functional equation \[ f(xy)+\sum _{k=1}^{n-1}f(\sigma ^k(y)x)=nf(x)f(y),\ x,y \in G,\]
in terms of unitary characters of $G$.
LA - eng
KW - Functional equation; non-abelian Fourier transform; representation of a compact group.
UR - http://eudml.org/doc/289737
ER -
References
top- Akkouchi, M., Bouikhalene, B., Elqorachi, E., Functional equations and K-spherical functions, Georgian Math. J. 15 (2008), 1-20.
- An, J., Yang, D.,Nonabelian harmonic analysis and functional equations on compact groups, J. Lie Theory 21 (2011), 427-455.
- Badora, R., On a joint generalization of Cauchy's and d'Alembert's functional equations, Aequationes Math. 43 (1992), 72-89.
- Chahbi, A., Fadli, B., Kabbaj, S., Functional equations of Cauchy's and d'Alembert's type on compact groups, Proyecciones (Antofagasta) 34 (2015), 297-305.
- Chojnacki, W., On some functional equation generalizing Cauchy's and d'Alembert's functional equations, Colloq. Math. 55 (1988), 169-178.
- Chojnacki, W., On group decompositions of bounded cosine sequences, Studia Math. 181 (2007), 61-85.
- Chojnacki, W., On uniformly bounded spherical functions in Hilbert space, Aequationes Math. 81 (2011), 135-154.
- Fadli, B., Zeglami, D., Kabbaj, S., A variant of Wilson's functional equation, Publ. Math. Debrecen, to appear.
- Davison, T. M. K., D'Alembert's functional equation on topological groups, Aequationes Math. 76 (2008), 33-53.
- Davison, T. M. K., D'Alembert's functional equation on topological monoids, Publ. Math. Debrecen, 75 (2009), 41-66.
- de Place Friis, P., D'Alembert's and Wilson's equation on Lie groups, Aequationes Math. 67 (2004), 12-25.
- Elqorachi, E., Akkouchi, M., Bakali, A., Bouikhalene, B., Badora's equation on non-Abelian locally compact groups, Georgian Math. J. 11 (2004), 449-466.
- Folland, G., A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, FL, 1995.
- Shin'ya, H., Spherical matrix functions and Banach representability for locally compact motion groups, Japan. J. Math. (N.S.), 28 (2002), 163-201.
- Stetkaer, H., D'Alembert's functional equations on metabelian groups, Aequationes Math. 59 (2000), 306-320.
- Stetkaer, H., D'Alembert's and Wilson's functional equations on step 2 nilpotent groups, Aequationes Math. 67 (2004), 241-262.
- Stetkaer, H., Properties of d'Alembert functions, Aequationes Math. 77 (2009), 281-301.
- Stetkaer, H., Functional Equations on Groups, World Scientfic, Singapore, 2013.
- Stetkaer, H., D'Alembert's functional equation on groups, Banach Center Publ. 99 (2013), 173-191.
- Stetkaer, H., A variant of d'Alembert's functional equation, Aequationes Math. 89 (2015), 657-662.
- Yang, D., Factorization of cosine functions on compact connected groups, Math. Z. 254 (2006), 655-674.
- Yang, D., Functional equations and Fourier analysis, Canad. Math. Bull. 56 (2013), 218-224.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.